Title: | Identification and expression profiles of candidate chemosensory receptors in Histia rhodope (Lepidoptera: Zygaenidae) |
Author(s): | Yang H; Dong J; Sun YL; Hu Z; Lyu QH; Li D; |
Address: | "College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China" |
ISSN/ISBN: | 2167-8359 (Print) 2167-8359 (Electronic) 2167-8359 (Linking) |
Abstract: | "Insect olfaction and vision play important roles in survival and reproduction. Diurnal butterflies mainly rely on visual cues whereas nocturnal moths rely on olfactory signals to locate external resources. Histia rhodope Cramer (Lepidoptera: Zygaenidae) is an important pest of the landscape tree Bischofia polycarpa in China and other Southeast Asian regions. As a diurnal moth, H. rhodope represents a suitable model for studying the evolutionary shift from olfactory to visual communication. However, only a few chemosensory soluble proteins have been characterized and information on H. rhodope chemoreceptor genes is currently lacking. In this study, we identified 45 odorant receptors (ORs), nine ionotropic receptors (IRs), eight gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs) from our previously acquired H. rhodope antennal transcriptomic data. The number of chemoreceptors of H. rhodope was less compared with that found in many nocturnal moths. Some specific chemoreceptors such as OR co-receptor (ORco), ionotropic receptors co-receptor, CO(2) receptors, sugar receptors and bitter receptors were predicted by phylogenetic analysis. Notably, two candidate pheromone receptors (PRs) were identified within a novel PR lineage. qRT-PCR results showed that almost all tested genes (22/24) were predominantly expressed in antennae, indicating that they may be important in olfactory function. Among these antennae-enriched genes, six ORs, five IRs and two GRs displayed female-biased expression, while two ORs displayed male-biased expression. Additionally, HrhoIR75q.2 and HrhoGR67 were more highly expressed in heads and legs. This study enriches the olfactory gene inventory of H. rhodope and provides the foundation for further research of the chemoreception mechanism in diurnal moths" |
Keywords: | Chemosensory receptors Diurnal insects Histia rhodope Phylogenetic analysis Relative expression; |
Notes: | "PubMed-not-MEDLINEYang, Haibo Dong, Junfeng Sun, Ya-Lan Hu, Zhenjie Lyu, Qi-Hui Li, Dingxu eng 2020/10/08 PeerJ. 2020 Sep 24; 8:e10035. doi: 10.7717/peerj.10035. eCollection 2020" |