Title: | Distribution of the Specialist Aphid Uroleucon nigrotuberculatum (Homoptera: Aphididae) in Response to Host Plant Semiochemical Induction by the Gall Fly Eurosta solidaginis (Diptera: Tephritidae) |
Author(s): | Thomas AM; Williams RS; Swarthout RF; |
Address: | "Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC. Department of Biology, Appalachian State University, Boone, NC. Department of Chemistry, Appalachian State University, Boone, NC" |
ISSN/ISBN: | 1938-2936 (Electronic) 0046-225X (Linking) |
Abstract: | "Many plants use terpenoids and other volatile compounds as semiochemicals. Reception of plant volatiles by conspecifics may trigger a defensive phytochemical response. These same compounds can also function as host recognition signals for phytophagous insects. In this experiment, we find that when the specialist gall-forming fly Eurosta solidaginis (Fitch; Diptera: Tephritidae) attacks its tall goldenrod (Solidago altissima (L.; Asterales: Asteraceae)) host plant, the fly indirectly induces a phytochemical response in nearby tall goldenrod plants. This phytochemical response may, in turn, act as a positive signal attracting the goldenrod specialist aphid Uroleucon nigrotuberculatum (Olive; Hemiptera: Aphididae). Laboratory-based experiments exposing ungalled tall goldenrod plants to the volatiles released by E. solidaginis galls demonstrated a consistent increase in foliar terpenoid concentrations in ungalled plants. Analysis of tall goldenrod stem and gall tissue chemistry revealed induction of terpenoids in gall tissue, with a simultaneous decrease in green leaf volatile concentrations. Field experiments demonstrated a consistent spatial relationship in tall goldenrod foliar terpenoid concentrations with distance from an E. solidaginis gall. Both laboratory and field experiments establish consistent induction of the terpene beta-farnesene, and that this compound is a strong positive predictor of U. nigrotuberculatum aphid presence on goldenrod plants along with plant biomass and several other foliar terpenoids. These findings suggest E. solidaginis induced phytochemistry, especially beta-farnesene, may be acting as a kairomone, driving aphid distribution in the field" |
Keywords: | Animals *Aphids *Diptera Insecta Pheromones *Solidago *Tephritidae gall kairomone semiochemical terpenoid; |
Notes: | "MedlineThomas, Austin M Williams, Ray S Swarthout, Robert F eng Research Support, Non-U.S. Gov't England 2019/06/22 Environ Entomol. 2019 Sep 30; 48(5):1138-1148. doi: 10.1093/ee/nvz078" |