Title: | Fabrication of Biobased Hydrophobic Hybrid Cotton Fabrics Using Molecular Self-Assembly: Applications in the Development of Gas Sensor Fabrics |
Author(s): | Thamizhanban A; Sarvepalli GP; Lalitha K; Prasad YS; Subbiah DK; Das A; Balaguru Rayappan JB; Nagarajan S; |
Address: | "Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India. Centre for Nano Technology & Advanced Biomaterials (CeNTAB) and School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India. Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110 016, India. Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India" |
ISSN/ISBN: | 2470-1343 (Electronic) 2470-1343 (Linking) |
Abstract: | "Inadvertent inhalation of various volatile organic compounds during industrial processes, such as coal and metal mining, metal manufacturing, paper and pulp industry, food processing, petroleum refining, and concrete and chemical industries, has caused an adverse effect on human health. In particular, exposure to trimethylamine (TMA), a fishy odor poisonous gas, resulted in numerous health hazards such as neurotoxicity, irritation in eyes, nose, skin, and throat, blurred vision, and many more. According to the environmental protection agency, TMA in the level of 0.10 ppm is generally considered as safe, and excess dose results in 'trimethylaminuria' or 'fish odor syndrome.' In order to avoid the health hazards associated with the inhalation of TMA, there is an urge to design a sensor for TMA detection even at low levels for use in food-processing industries, medical diagnosis, and environment. In this report, for the first time, we have developed a TMA sensor fabric using a sequential self-assembly process from silver-incorporated glycolipids. Formation of self-assembled supramolecular architecture, interaction of the assembled structure with the cotton fabric, and sensing mechanism were completely investigated with the help of various instrumental methods. To our surprise, the developed fabric displayed a transient response for 1-500 ppm of TMA and a stable response toward 100 ppm of TMA for 15 days. We believe that the reported flexible TMA sensor fabrics developed via the sequential self-assembly process hold great promise for various innovative applications in environment, healthcare, medicine, and biology" |
Notes: | "PubMed-not-MEDLINEThamizhanban, Ayyapillai Sarvepalli, Guru Prasanth Lalitha, Krishnamoorthy Prasad, Yadavali Siva Subbiah, Dinesh Kumar Das, Apurba Balaguru Rayappan, John Bosco Nagarajan, Subbiah eng 2020/03/10 ACS Omega. 2020 Feb 12; 5(8):3839-3848. doi: 10.1021/acsomega.9b02733. eCollection 2020 Mar 3" |