Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Muscarinic receptor type 1 (M1) stimulation, probably through KCNQ/Kv7 channel closure, increases spontaneous GABA release at the dendrodendritic synapse in the mouse accessory olfactory bulb"    Next AbstractCharacterization of the key aroma compounds in beef extract using aroma extract dilution analysis »

Sci Rep


Title:Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations
Author(s):Takahashi Y; Shiojiri K; Yamawo A;
Address:"Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki, 036-8560, Japan. Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan. Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki, 036-8560, Japan. yamawo.aki@gmail.com"
Journal Title:Sci Rep
Year:2021
Volume:20210616
Issue:1
Page Number:12675 -
DOI: 10.1038/s41598-021-92123-0
ISSN/ISBN:2045-2322 (Electronic) 2045-2322 (Linking)
Abstract:"Aboveground communication between plants is well known to change defense traits in leaves, but its effects on belowground plant traits and soil characteristics have not been elucidated. We hypothesized that aboveground plant-to-plant communication reduces root nodule symbiosis via induction of bactericidal chemical defense substances and changes the soil nutrient environment. Soybean plants were exposed to the volatile organic compounds (VOCs) from damaged shoots of Solidago canadensis var. scabra, and leaf defense traits (total phenolics, saponins), root saponins, and root nodule symbiosis traits (number and biomass of root nodules) were measured. Soil C/N ratios and mineral concentrations were also measured to estimate the effects of resource uptake by the plants. We found that total phenolics were not affected. However, plants that received VOCs had higher saponin concentrations in both leaves and roots, and fewer root nodules than untreated plants. Although the concentrations of soil minerals did not differ between treatments, soil C/N ratio was significantly higher in the soil of communicated plants. Thus, the aboveground plant-to-plant communication led to reductions in root nodule symbiosis and soil nutrient concentrations. Our results suggest that there are broader effects of induced chemical defenses in aboveground plant organs upon belowground microbial interactions and soil nutrients, and emphasize that plant response based on plant-to-plant communications are a bridge between above- and below-ground ecosystems"
Keywords:"Phenols/metabolism Plant Leaves/metabolism Plant Roots/metabolism Root Nodules, Plant/*physiology Saponins/metabolism Soil/chemistry Solidago/*physiology Soybeans/*physiology *Symbiosis Volatile Organic Compounds/metabolism/*pharmacology;"
Notes:"MedlineTakahashi, Yuta Shiojiri, Kaori Yamawo, Akira eng Research Support, Non-U.S. Gov't England 2021/06/18 Sci Rep. 2021 Jun 16; 11(1):12675. doi: 10.1038/s41598-021-92123-0"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024