Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffects of Volatile Organic Compounds on Biofilms and Swimming Motility of Agrobacterium tumefaciens    Next AbstractCascading effects from predator removal depend on resource availability in a benthic food web »

Folia Microbiol (Praha)


Title:Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species
Author(s):Sidorova DE; Khmel IA; Chernikova AS; Chupriyanova TA; Plyuta VA;
Address:"Institute of Molecular Genetics of National Research Center 'Kurchatov Institute', Kurchatov sq. 2, Moscow, 123182, Russia. Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, 125480, Russia. Institute of Molecular Genetics of National Research Center 'Kurchatov Institute', Kurchatov sq. 2, Moscow, 123182, Russia. plyutaba@gmail.com"
Journal Title:Folia Microbiol (Praha)
Year:2023
Volume:20230215
Issue:4
Page Number:617 - 626
DOI: 10.1007/s12223-023-01038-y
ISSN/ISBN:1874-9356 (Electronic) 0015-5632 (Linking)
Abstract:"Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively"
Keywords:*Pseudomonas/genetics/metabolism Agar/metabolism Escherichia coli/metabolism Serratia/genetics/metabolism *Volatile Organic Compounds/pharmacology Arabidopsis thaliana Lux-biosensors Oxidative stress Seed germination Volatile compounds Volatile organic co;
Notes:"MedlineSidorova, Daria E Khmel, Inessa A Chernikova, Anastasya S Chupriyanova, Tanya A Plyuta, Vladimir A eng 121030200227-6/National Research Center 'Kurchatov Institute'/ 2023/02/16 Folia Microbiol (Praha). 2023 Aug; 68(4):617-626. doi: 10.1007/s12223-023-01038-y. Epub 2023 Feb 15"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 06-01-2025