Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDetection of differentiated thyroid carcinoma in exhaled breath with an electronic nose    Next Abstract"Determination of exposure to benzene, toluene and xylenes in Turkish primary school children by analysis of breath and by environmental passive sampling" »

JAMA Netw Open


Title:Diagnostic Performance of Electronic Noses in Cancer Diagnoses Using Exhaled Breath: A Systematic Review and Meta-analysis
Author(s):Scheepers M; Al-Difaie Z; Brandts L; Peeters A; van Grinsven B; Bouvy ND;
Address:"GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands. Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, the Netherlands. Sensor Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands. Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands"
Journal Title:JAMA Netw Open
Year:2022
Volume:20220601
Issue:6
Page Number:e2219372 -
DOI: 10.1001/jamanetworkopen.2022.19372
ISSN/ISBN:2574-3805 (Electronic) 2574-3805 (Linking)
Abstract:"IMPORTANCE: There has been a growing interest in the use of electronic noses (e-noses) in detecting volatile organic compounds in exhaled breath for the diagnosis of cancer. However, no systematic evaluation has been performed of the overall diagnostic accuracy and methodologic challenges of using e-noses for cancer detection in exhaled breath. OBJECTIVE: To provide an overview of the diagnostic accuracy and methodologic challenges of using e-noses for the detection of cancer. DATA SOURCES: An electronic search was performed in the PubMed and Embase databases (January 1, 2000, to July 1, 2021). STUDY SELECTION: Inclusion criteria were the following: (1) use of e-nose technology, (2) detection of cancer, and (3) analysis of exhaled breath. Exclusion criteria were (1) studies published before 2000; (2) studies not performed in humans; (3) studies not performed in adults; (4) studies that only analyzed biofluids; and (5) studies that exclusively used gas chromatography-mass spectrometry to analyze exhaled breath samples. DATA EXTRACTION AND SYNTHESIS: PRISMA guidelines were used for the identification, screening, eligibility, and selection process. Quality assessment was performed using Quality Assessment of Diagnostic Accuracy Studies 2. Generalized mixed-effects bivariate meta-analysis was performed. MAIN OUTCOMES AND MEASURES: Main outcomes were sensitivity, specificity, and mean area under the receiver operating characteristic curve. RESULTS: This review identified 52 articles with a total of 3677 patients with cancer. All studies were feasibility studies. The sensitivity of e-noses ranged from 48.3% to 95.8% and the specificity from 10.0% to 100.0%. Pooled analysis resulted in a mean (SE) area under the receiver operating characteristic curve of 94% (95% CI, 92%-96%), a sensitivity of 90% (95% CI, 88%-92%), and a specificity of 87% (95% CI, 81%-92%). Considerable heterogeneity existed among the studies because of differences in the selection of patients, endogenous and exogenous factors, and collection of exhaled breath. CONCLUSIONS AND RELEVANCE: Results of this review indicate that e-noses have a high diagnostic accuracy for the detection of cancer in exhaled breath. However, most studies were feasibility studies with small sample sizes, a lack of standardization, and a high risk of bias. The lack of standardization and reproducibility of e-nose research should be addressed in future research"
Keywords:Adult Breath Tests/methods *Electronic Nose Exhalation Humans *Neoplasms/diagnosis Reproducibility of Results;
Notes:"MedlineScheepers, Max H M C Al-Difaie, Zaid Brandts, Lloyd Peeters, Andrea van Grinsven, Bart Bouvy, Nicole D eng Meta-Analysis Systematic Review 2022/06/30 JAMA Netw Open. 2022 Jun 1; 5(6):e2219372. doi: 10.1001/jamanetworkopen.2022.19372"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024