Title: | Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense |
Author(s): | Saha H; Kaloterakis N; Harvey JA; van der Putten WH; Biere A; |
Address: | "Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands. Soil Biology Group, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands. Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Julich GmbH, Wilhelm-Johnen-Strasse, 52428 Julich, Germany. Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands" |
ISSN/ISBN: | 2223-7747 (Print) 2223-7747 (Electronic) 2223-7747 (Linking) |
Abstract: | "Beneficial soil microbes can enhance plant growth and defense, but the extent to which this occurs depends on the availability of resources, such as water and nutrients. However, relatively little is known about the role of light quality, which is altered during shading, resulting a low red: far-red ratio (R:FR) of light. We examined how low R:FR light influences arbuscular mycorrhizal fungus (AMF)-mediated changes in plant growth and defense using Solanum lycopersicum (tomato) and the insect herbivore Chrysodeixis chalcites. We also examined effects on third trophic level interactions with the parasitoid Cotesia marginiventris. Under low R:FR light, non-mycorrhizal plants activated the shade avoidance syndrome (SAS), resulting in enhanced biomass production. However, mycorrhizal inoculation decreased stem elongation in shaded plants, thus counteracting the plant's SAS response to shading. Unexpectedly, activation of SAS under low R:FR light did not increase plant susceptibility to the herbivore in either non-mycorrhizal or mycorrhizal plants. AMF did not significantly affect survival or growth of caterpillars and parasitoids but suppressed herbivore-induced expression of jasmonic acid-signaled defenses genes under low R:FR light. These results highlight the context-dependency of AMF effects on plant growth and defense and the potentially adverse effects of AMF under shading" |
Keywords: | Solanum lycopersicum (tomato) arbuscular mycorrhizal fungi context dependency light quality plant defense plant microbe insect interactions; |
Notes: | "PubMed-not-MEDLINESaha, Haymanti Kaloterakis, Nikolaos Harvey, Jeffrey A Van der Putten, Wim H Biere, Arjen eng 765290/European Union's Horizon 2020 Research and Innovation Pro-gram/ Switzerland 2022/04/13 Plants (Basel). 2022 Mar 24; 11(7):861. doi: 10.3390/plants11070861" |