Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Hydrolates from lavender (Lavandula angustifolia)--their chemical composition as well as aromatic, antimicrobial and antioxidant properties"    Next AbstractMembrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway »

Mol Cell Biol


Title:AKR1 encodes a candidate effector of the G beta gamma complex in the Saccharomyces cerevisiae pheromone response pathway and contributes to control of both cell shape and signal transduction
Author(s):Pryciak PM; Hartwell LH;
Address:"Department of Genetics, University of Washington, Seattle 98195-7360, USA. pryciak@u.washington.edu"
Journal Title:Mol Cell Biol
Year:1996
Volume:16
Issue:6
Page Number:2614 - 2626
DOI: 10.1128/MCB.16.6.2614
ISSN/ISBN:0270-7306 (Print) 1098-5549 (Electronic) 0270-7306 (Linking)
Abstract:"Mating pheromones of Saccharomyces cerevisiae control both signal transduction events and changes in cell shape. The G beta gamma complex of the pheromone receptor-coupled G protein activates the signal transduction pathway, leading to transcriptional induction and cell cycle arrest, but how pheromone-dependent signalling leads to cell shape changes is unclear. We used a two-hybrid system to search for proteins that interact with the G beta gamma complex and that might be involved in cell shape changes. We identified the ankyrin repeat-containing protein Akr1p and show here that it interacts with the free G beta gamma complex. This interaction may be regulated by pheromone, since Akr1p is excluded from the G alpha beta gamma heterotrimer. Both haploid and diploid cells lacking Akr1p grow slowly and develop deformed buds or projections, suggesting that this protein participates in the control of cell shape. In addition, Akr1p has a negative influence on the pheromone response pathway. Epistasis analysis demonstrates that this negative effect does not act on the G beta gamma complex but instead affects the kinase cascade downstream of G beta gamma, so that the kinase Ste20p and components downstream of Ste20p (e.g., Ste11p and Ste7p) are partially activated in cells lacking Akr1p. Although the elevated signalling is eliminated by deletion of Ste20p (or components downstream of Ste20p), the growth and morphological abnormalities of cells lacking Akr1p are not rescued by deletion of any of the known pheromone response pathway components. We therefore propose that Akr1p negatively affects the activity of a protein that both controls cell shape and contributes to the pheromone response pathway upstream of Ste20p but downstream of G beta gamma. Specifically, because recent evidence suggests that Bem1p, Cdc24p, and Cdc42p can act in the pheromone response pathway, we suggest that Akr1p affects the functions of these proteins, by preventing them from activating mating-specific targets including the pheromone-responsive kinase cascade, until G beta gamma is activated by pheromone"
Keywords:"Base Sequence Cell Polarity/physiology DNA, Fungal/genetics Diploidy Fungal Proteins/genetics/physiology *GTP-Binding Protein beta Subunits GTP-Binding Proteins/genetics/*physiology *Genes, Fungal *Heterotrimeric GTP-Binding Proteins Models, Biological Mo;"
Notes:"MedlinePryciak, P M Hartwell, L H eng GM61-4590/GM/NIGMS NIH HHS/ Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. 1996/06/01 Mol Cell Biol. 1996 Jun; 16(6):2614-26. doi: 10.1128/MCB.16.6.2614"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 23-09-2024