Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChanges of volatile organic compounds and bioactivity of Alternaria brassicae GL07 in different ages    Next AbstractChanges in biochemical metabolites in manila clam after a temporary culture with high-quality microalgal feed mixed with the dinoflagellate species Karlodinium veneficum and K. zhouanum »

Pest Manag Sci


Title:The herbivore-induced plant volatile tetradecane enhances plant resistance to Holotrichia parallela larvae in maize roots
Author(s):Pan Y; Wang Z; Zhao SW; Wang X; Li YS; Liu JN; Wang S; Xi JH;
Address:"College of Plant Science, Jilin University, Changchun, China. Changchun Customs Technology Center, Changchun, China"
Journal Title:Pest Manag Sci
Year:2022
Volume:20211013
Issue:2
Page Number:550 - 560
DOI: 10.1002/ps.6660
ISSN/ISBN:1526-4998 (Electronic) 1526-498X (Linking)
Abstract:"BACKGROUND: Many herbivore-induced volatiles have been proven to act as signaling compounds to regulate nearby plant defense responses. However, the precise roles of key volatiles produced by maize roots after Holotrichia parallela larva feeding remain largely unknown. RESULTS: We investigated changes in phytohormones and volatiles in maize roots after H. parallela larval infestation. Marked increases in the phytohormone jasmonic acid (JA) and the volatiles jasmone and tetradecane were induced by herbivores, whereas the salicylic acid content decreased. In addition, pre-exposure to tetradecane markedly increased the levels of the stress hormone JA, its precursors and derivatives, and related gene expression. In addition, pre-exposure altered the production of defensive benzoxazinoid secondary metabolites, resulting in increased plant resistance to H. parallela larvae. Plants pre-exposed to jasmone did not differ from control plants. In addition, bioassays showed that H. parallela larval growth was suppressed by feeding maize roots after pre-exposure to tetradecane. CONCLUSION: These results demonstrate that tetradecane may function as a potent defense induction signal that prepares neighboring plants for incoming attacks. (c) 2021 Society of Chemical Industry"
Keywords:Alkanes Animals *Coleoptera Cyclopentanes/pharmacology *Herbivory Larva Oxylipins Plant Roots Zea mays/genetics Holotrichia parallela larvae benzoxazinoids defense induction jasmone jasmonic acid tetradecane;
Notes:"MedlinePan, Yu Wang, Zhun Zhao, Shi-Wen Wang, Xiao Li, Yun-Shuo Liu, Jia-Nan Wang, Shang Xi, Jing-Hui eng 2017YFD0200600/National Key R&D Program of China/ 2018YFD0201000/National Key R&D Program of China/ JLUXKJC2020107/Project of Disciplinary Crossing and Integration from Jilin University/ England 2021/09/30 Pest Manag Sci. 2022 Feb; 78(2):550-560. doi: 10.1002/ps.6660. Epub 2021 Oct 13"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025