Title: | "A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis" |
Author(s): | North JA; Narrowe AB; Xiong W; Byerly KM; Zhao G; Young SJ; Murali S; Wildenthal JA; Cannon WR; Wrighton KC; Hettich RL; Tabita FR; |
Address: | "Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA. Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Pacific Northwest National Laboratory, Richland, WA 99352, USA. Department of Mathematics, University of California, Riverside, Riverside, CA 92507, USA. Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA. tabita.1@osu.edu" |
ISSN/ISBN: | 1095-9203 (Electronic) 0036-8075 (Linking) |
Abstract: | "Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis" |
Keywords: | Anaerobiosis Bacterial Proteins/*chemistry/classification/genetics Biocatalysis Biosynthetic Pathways Ethylenes/*biosynthesis Methane/*biosynthesis Methionine/*biosynthesis Oxidoreductases/*chemistry/classification/genetics Rhodospirillum rubrum/*enzymolo; |
Notes: | "MedlineNorth, Justin A Narrowe, Adrienne B Xiong, Weili Byerly, Kathryn M Zhao, Guanqi Young, Sarah J Murali, Srividya Wildenthal, John A Cannon, William R Wrighton, Kelly C Hettich, Robert L Tabita, F Robert eng P30 CA046934/CA/NCI NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2020/08/29 Science. 2020 Aug 28; 369(6507):1094-1098. doi: 10.1126/science.abb6310" |