Title: | (Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions |
Author(s): | Baumgarten W; Fleige H; Peth S; Horn R; |
Address: | "Institute for Plant Nutrition and Soil Science, Christian-Albrechts-University zu Kiel, Hermann-Rodewald-Strasse 2, Kiel, Germany. w.baumgarten@soils.uni-kiel.de" |
DOI: | 10.1007/s10532-012-9601-6 |
ISSN/ISBN: | 1572-9729 (Electronic) 0923-9820 (Linking) |
Abstract: | "The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm(3)) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of -6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects" |
Keywords: | "Bacteria/*metabolism Environmental Restoration and Remediation Hydrocarbons, Chlorinated/*metabolism Models, Theoretical Porosity Soil/chemistry Soil Microbiology Soil Pollutants/*chemistry Volatile Organic Compounds/*metabolism Water Movements;" |
Notes: | "MedlineBaumgarten, W Fleige, H Peth, S Horn, R eng Research Support, Non-U.S. Gov't Netherlands 2012/11/20 Biodegradation. 2013 Jul; 24(4):455-69. doi: 10.1007/s10532-012-9601-6. Epub 2012 Nov 17" |