Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMating-induced transient inhibition of responses to sex pheromone in a male moth is not mediated by octopamine or serotonin    Next AbstractEvaluation of traps and toxicants in an attract-and-kill system for Rhagoletis mendax (Diptera: Tephritidae) »

Eur J Neurosci


Title:Mating-induced differential coding of plant odour and sex pheromone in a male moth
Author(s):Barrozo RB; Jarriault D; Deisig N; Gemeno C; Monsempes C; Lucas P; Gadenne C; Anton S;
Address:"INRA, UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, Route de St Cyr, 78000 Versailles, France"
Journal Title:Eur J Neurosci
Year:2011
Volume:20110414
Issue:10
Page Number:1841 - 1850
DOI: 10.1111/j.1460-9568.2011.07678.x
ISSN/ISBN:1460-9568 (Electronic) 0953-816X (Linking)
Abstract:"Innate behaviours in animals can be influenced by several factors, such as the environment, experience, or physiological status. This behavioural plasticity originates from changes in the underlying neuronal substrate. A well-described form of plasticity is induced by mating. In both vertebrates and invertebrates, males experience a post-ejaculatory refractory period, during which they avoid new females. In the male moth Agrotis ipsilon, mating induces a transient inhibition of responses to the female-produced sex pheromone. To understand the neural bases of this inhibition and its possible odour specificity, we carried out a detailed analysis of the response characteristics of the different neuron types from the periphery to the central level. We examined the response patterns of pheromone-sensitive and plant volatile-sensitive neurons in virgin and mated male moths. By using intracellular recordings, we showed that mating changes the response characteristics of pheromone-sensitive antennal lobe (AL) neurons, and thus decreases their sensitivity to sex pheromone. Individual olfactory receptor neuron (ORN) recordings and calcium imaging experiments indicated that pheromone sensory input remains constant. On the other hand, calcium responses to non-pheromonal odours (plant volatiles) increased after mating, as reflected by increased firing frequencies of plant-sensitive AL neurons, although ORN responses to heptanal remained unchanged. We suggest that differential processing of pheromone and plant odours allows mated males to transiently block their central pheromone detection system, and increase non-pheromonal odour detection in order to efficiently locate food sources"
Keywords:"Aldehydes/chemistry Animals Calcium/metabolism Electrophysiology Female Male Moths/anatomy & histology/*physiology *Odorants Olfactory Receptor Neurons/cytology/physiology Plants/*chemistry Sex Attractants/*metabolism Sexual Behavior, Animal/*physiology S;"
Notes:"MedlineBarrozo, Romina B Jarriault, David Deisig, Nina Gemeno, Cesar Monsempes, Christelle Lucas, Philippe Gadenne, Christophe Anton, Sylvia eng Research Support, Non-U.S. Gov't France 2011/04/15 Eur J Neurosci. 2011 May; 33(10):1841-50. doi: 10.1111/j.1460-9568.2011.07678.x. Epub 2011 Apr 14"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-11-2024