Title: | Antennal lobe projection destinations of Helicoverpa zea male olfactory receptor neurons responsive to heliothine sex pheromone components |
Author(s): | Lee SG; Carlsson MA; Hansson BS; Todd JL; Baker TC; |
Address: | "Chemical Ecology Lab, Department of Entomology, Penn State University, University Park, PA 16802, USA" |
Journal Title: | J Comp Physiol A Neuroethol Sens Neural Behav Physiol |
DOI: | 10.1007/s00359-005-0071-8 |
ISSN/ISBN: | 0340-7594 (Print) 0340-7594 (Linking) |
Abstract: | "We used single sensillum recordings to define male Helicoverpa zea olfactory receptor neuron physiology followed by cobalt staining to trace the axons to destination glomeruli of the antennal lobe. Receptor neurons in type A sensilla that respond to the major pheromone component, (Z)-11-hexadecenal, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of these sensilla a second receptor neuron was stained that projected consistently to a specific glomerulus residing in a previously unrecognized glomerular complex with six other glomeruli stationed immediately posterior to the MGC. Cobalt staining corroborated by calcium imaging showed that receptor neurons in type C sensilla sensitive to (Z)-9-hexadecenal projected to the dorsomedial posterior glomerulus of the MGC, whereas the co-compartmentalized antagonist-sensitive neurons projected to the dorsomedial anterior glomerulus. We also discovered that the olfactory receptor neurons in type B sensilla exhibit the same axonal projections as those in type C sensilla. Thus, it seems that type B sensilla are anatomically type C with regard to the projection destinations of the two receptor neurons, but physiologically one of the receptor neurons is now unresponsive to everything except (Z)-9-tetradecenal, and the other responds to none of the pheromone-related odorants tested" |
Keywords: | "Action Potentials/physiology Aldehydes/analysis/pharmacology Animals Calcium/analysis Cobalt/analysis Evoked Potentials/physiology Histocytochemistry Male Moths/*physiology Neurons, Afferent/drug effects/physiology Olfactory Receptor Neurons/drug effects/;" |
Notes: | "MedlineLee, Seong-Gyu Carlsson, Mikael A Hansson, Bill S Todd, Julie L Baker, Thomas C eng Research Support, U.S. Gov't, Non-P.H.S. Germany 2005/11/26 J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Apr; 192(4):351-63. doi: 10.1007/s00359-005-0071-8. Epub 2005 Nov 25" |