Title: | Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover |
Author(s): | Kim TG; Moon KE; Yun J; Cho KS; |
Address: | "Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea" |
Journal Title: | Appl Microbiol Biotechnol |
DOI: | 10.1007/s00253-012-4123-z |
ISSN/ISBN: | 1432-0614 (Electronic) 0175-7598 (Linking) |
Abstract: | "Methanotrophs must become established and active in a landfill biocover for successful methane oxidation. A lab-scale biocover with a soil mixture was operated for removal of methane and nonmethane volatile organic compounds, such as dimethyl sulfide (DMS), benzene (B), and toluene (T). The methane elimination capacity was 211+/-40 g m(-2) d(-1) at inlet loads of 330-516 g m(-2) d(-1). DMS, B, and T were completely removed at the bottom layer (40-50 cm) with inlet loads of 221.6+/-92.2, 99.6+/-19.5, and 23.4+/-4.9 mg m(-2) d(-1), respectively. The bacterial community was examined based on DNA and RNA using ribosomal tag pyrosequencing. Interestingly, methanotrophs comprised 80% of the active community (RNA) while 29% of the counterpart (DNA). Types I and II methanotrophs equally contributed to methane oxidation, and Methylobacter, Methylocaldum, and Methylocystis were dominant in both communities. The DNA vs. RNA comparison suggests that DNA-based analysis alone can lead to a significant underestimation of active members" |
Keywords: | "Bacteria/*classification/genetics/metabolism Benzene/metabolism *Biota DNA, Bacterial/*genetics DNA, Ribosomal/genetics Metagenomics/*methods Methane/*metabolism RNA, Bacterial/*genetics RNA, Ribosomal/genetics *Soil Microbiology Sulfides/metabolism Tolue;" |
Notes: | "MedlineKim, Tae Gwan Moon, Kyung-Eun Yun, Jeonghee Cho, Kyung-Suk eng Evaluation Study Research Support, Non-U.S. Gov't Germany 2012/05/11 Appl Microbiol Biotechnol. 2013 Apr; 97(7):3171-81. doi: 10.1007/s00253-012-4123-z. Epub 2012 May 11" |