Title: | Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans |
Author(s): | Jang H; Levy S; Flavell SW; Mende F; Latham R; Zimmer M; Bargmann CI; |
Address: | "Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065. Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065. Research Institute of Molecular Pathology IMP, Vienna Biocenter, 1030 Vienna, Austria. Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065; cori@rockefeller.edu" |
ISSN/ISBN: | 1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking) |
Abstract: | "A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits" |
Keywords: | "Animals Animals, Genetically Modified Caenorhabditis elegans/genetics/*metabolism Caenorhabditis elegans Proteins/genetics/metabolism Electrical Synapses/genetics/*metabolism Gap Junctions/genetics/*metabolism Membrane Proteins/genetics/metabolism Motor A;" |
Notes: | "MedlineJang, Heeun Levy, Sagi Flavell, Steven W Mende, Fanny Latham, Richard Zimmer, Manuel Bargmann, Cornelia I eng 281869/ERC_/European Research Council/International HHMI/Howard Hughes Medical Institute/ Research Support, Non-U.S. Gov't 2017/02/02 Proc Natl Acad Sci U S A. 2017 Feb 14; 114(7):E1263-E1272. doi: 10.1073/pnas.1621274114. Epub 2017 Jan 31" |