Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification of sequence elements that confer cell-type-specific control of MF alpha 1 expression in Saccharomyces cerevisiae    Next AbstractIdentification of the sex pheromone components secreted by female moths of Peridroma saucia (Noctuidae: Noctuinae) »

Biotechnol Bioeng


Title:Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide
Author(s):Inokuma K; Bamba T; Ishii J; Ito Y; Hasunuma T; Kondo A;
Address:"Organization of Advanced Science and Technology, Kobe University, Kobe, Japan. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. akondo@kobe-u.ac.jp. Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. akondo@kobe-u.ac.jp"
Journal Title:Biotechnol Bioeng
Year:2016
Volume:20160603
Issue:11
Page Number:2358 - 2366
DOI: 10.1002/bit.26008
ISSN/ISBN:1097-0290 (Electronic) 0006-3592 (Linking)
Abstract:"Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae alpha-mating pheromone (MFalpha1SP) were constructed for cell-surface display of Aspergillus aculeatus beta-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFalpha1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFalpha1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. (c) 2016 Wiley Periodicals, Inc"
Keywords:Cell Membrane/*metabolism Cellulase/*metabolism Genetic Enhancement/*methods Membrane Glycoproteins/*genetics/metabolism Protein Engineering/methods Protein Transport/genetics Recombinant Proteins/*biosynthesis/genetics Saccharomyces cerevisiae/*physiolog;
Notes:"MedlineInokuma, Kentaro Bamba, Takahiro Ishii, Jun Ito, Yoichiro Hasunuma, Tomohisa Kondo, Akihiko eng 2016/05/18 Biotechnol Bioeng. 2016 Nov; 113(11):2358-66. doi: 10.1002/bit.26008. Epub 2016 Jun 3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-11-2024