Title: | Adverse environmental effects of disposable face masks due to the excess usage |
Author(s): | Hui Li AS; Sathishkumar P; Selahuddeen ML; Asyraf Wan Mahmood WM; Zainal Abidin MH; Wahab RA; Mohamed Huri MA; Abdullah F; |
Address: | "Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia. Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, India. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia. Electronic address: faizuan@utm.my" |
DOI: | 10.1016/j.envpol.2022.119674 |
ISSN/ISBN: | 1873-6424 (Electronic) 0269-7491 (Print) 0269-7491 (Linking) |
Abstract: | "The widespread use of disposable face masks as a preventative strategy to address transmission of the SARS-CoV-2 virus has been a key environmental concern since the pandemic began. This has led to an unprecedented new form of contamination from improperly disposed masks, which liberates significant amounts of heavy metals and toxic chemicals in addition to volatile organic compounds (VOCs). Therefore, this study monitored the liberation of heavy metals, VOCs, and microfibers from submerged disposable face masks at different pH (4, 7 and 12), to simulate distinct environmental conditions. Lead (3.238% ppb), cadmium (0.672 ppb) and chromium (0.786 ppb) were found in the analyzed leachates. By pyrolysis, 2,4-dimethylhept-1-ene and 4-methylheptane were identified as the VOCs produced by the samples. The chemically degraded morphology in the FESEM images provided further evidence that toxic heavy metals and volatile organic compounds had been leached from the submerged face masks, with greater degradation observed in samples submerged at pH 7 and higher. The results are seen to communicate the comparable danger of passively degrading disposable face masks and the release of micro- or nanofibers into the marine environment. The toxicity of certain heavy metals and chemicals released from discarded face masks warrants better, more robust manufacturing protocols and increased public awareness for responsible disposal to reduce the adverse impact on ecology and human health" |
Keywords: | "*COVID-19/prevention & control Humans Masks *Metals, Heavy/toxicity SARS-CoV-2 *Volatile Organic Compounds/toxicity Covid-19 Face mask Marine environment Microfibers Toxic metals Volatile organic compounds;" |
Notes: | "MedlineHui Li, Alice Sim Sathishkumar, Palanivel Selahuddeen, Muhammad Luqman Asyraf Wan Mahmood, Wan M Zainal Abidin, Mohamad Hamdi Wahab, Roswanira Abdul Mohamed Huri, Mohamad Afiq Abdullah, Faizuan eng England 2022/07/01 Environ Pollut. 2022 Sep 1; 308:119674. doi: 10.1016/j.envpol.2022.119674. Epub 2022 Jun 27" |