Title: | Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey |
Author(s): | Hsueh YP; Gronquist MR; Schwarz EM; Nath RD; Lee CH; Gharib S; Schroeder FC; Sternberg PW; |
Address: | "Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States. Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan. Department of Chemistry, State University of New York at Fredonia, Fredonia, United States. Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States. Boyce Thompson Institute, Cornell University, Ithaca, United States. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States" |
ISSN/ISBN: | 2050-084X (Electronic) 2050-084X (Linking) |
Abstract: | "To study the molecular basis for predator-prey coevolution, we investigated how Caenorhabditis elegans responds to the predatory fungus Arthrobotrys oligospora. C. elegans and other nematodes were attracted to volatile compounds produced by A. oligospora. Gas-chromatographic mass-spectral analyses of A. oligospora-derived volatile metabolites identified several odors mimicking food cues attractive to nematodes. One compound, methyl 3-methyl-2-butenoate (MMB) additionally triggered strong sex- and stage-specific attraction in several Caenorhabditis species. Furthermore, when MMB is present, it interferes with nematode mating, suggesting that MMB might mimic sex pheromone in Caenorhabditis species. Forward genetic screening suggests that multiple receptors are involved in sensing MMB. Response to fungal odors involves the olfactory neuron AWCs. Single-cell RNA-seq revealed the GPCRs expressed in AWC. We propose that A. oligospora likely evolved the means to use olfactory mimicry to attract its nematode prey through the olfactory neurons in C. elegans and related species" |
Keywords: | Animals Ascomycota/*metabolism Caenorhabditis elegans/*drug effects *Cues Gas Chromatography-Mass Spectrometry *Host-Pathogen Interactions Pheromones/chemistry/*metabolism Volatile Organic Compounds/chemistry/metabolism Awc Arthrobotrys oligospora C.eleg; |
Notes: | "MedlineHsueh, Yen-Ping Gronquist, Matthew R Schwarz, Erich M Nath, Ravi David Lee, Ching-Han Gharib, Shalha Schroeder, Frank C Sternberg, Paul W eng K99 GM108867/GM/NIGMS NIH HHS/ R01 GM084389/GM/NIGMS NIH HHS/ R01 GM088290/GM/NIGMS NIH HHS/ T32 GM007616/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't England 2017/01/19 Elife. 2017 Jan 18; 6:e20023. doi: 10.7554/eLife.20023" |