Title: | The first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change upon ligand binding |
Author(s): | Hauser M; Kauffman S; Lee BK; Naider F; Becker JM; |
Address: | "Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA" |
ISSN/ISBN: | 0021-9258 (Print) 0021-9258 (Linking) |
Abstract: | "In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the alpha-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to probe the solvent exposure of single cysteine residues engineered to replace residues Tyr(101) through Gln(135) of EL1 in the presence and absence of the tridecapeptide alpha-factor and a receptor antagonist. Surprisingly, many residues, especially those at the N-terminal region, were not solvent-accessible, including residues of the binding-competent yet signal transduction-deficient mutants L102C, N105C, S108C, Y111C, and T114C. In striking contrast, two N-terminal residues, Y101C and Y106C, were readily solvent-accessible, but upon incubation with alpha-factor labeling was reduced, suggesting a pheromone-dependent conformational change limiting solvent accessibility had occurred. Labeling in the presence of the antagonist, which binds Ste2p but does not initiate signal transduction, did not significantly alter reactivity with the Y101C and Y106C receptors, suggesting that the alpha-factor-dependent decrease in solvent accessibility was not because of steric hindrance that prevented the labeling reagent access to these residues. Based on these and previous observations, we propose a model in which the N terminus of EL1 is structured such that parts of the loop are buried in a solvent-inaccessible environment interacting with the extracellular part of the transmembrane domain bundle. This study highlights the essential role of an extracellular loop in activation of a G protein-coupled receptor upon ligand binding" |
Keywords: | "Amino Acid Substitution Ligands *Models, Molecular Mutation, Missense Protein Binding Protein Precursors/*chemistry/genetics/metabolism Protein Structure, Tertiary Receptors, Mating Factor/*chemistry/genetics/metabolism Saccharomyces cerevisiae/*chemistry;" |
Notes: | "MedlineHauser, Melinda Kauffman, Sarah Lee, Byung-Kwon Naider, Fred Becker, Jeffrey M eng GM22086/GM/NIGMS NIH HHS/ GM22087/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural 2007/02/13 J Biol Chem. 2007 Apr 6; 282(14):10387-97. doi: 10.1074/jbc.M608903200. Epub 2007 Feb 9" |