Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractBalancing selection shapes density-dependent foraging behaviour    Next AbstractHow patrollers set foraging direction in harvester ants »

Anim Microbiome


Title:Gut microbiota of frugo-folivorous sifakas across environments
Author(s):Greene LK; Blanco MB; Rambeloson E; Graubics K; Fanelli B; Colwell RR; Drea CM;
Address:"Program in Ecology, Duke University, Durham, NC, 27708, USA. lydiakgreene@gmail.com. The Duke Lemur Center, Durham, NC, 27705, USA. lydiakgreene@gmail.com. Department of Biology, Duke University, Durham, NC, 27708, USA. lydiakgreene@gmail.com. The Duke Lemur Center, Durham, NC, 27705, USA. Department of Biology, Duke University, Durham, NC, 27708, USA. The Anjajavy Lodge and Reserve, Anjajavy, Sofia Region, Madagascar. CosmosID, Inc., Rockville, MD, 20850, USA. University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA. Program in Ecology, Duke University, Durham, NC, 27708, USA. Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA"
Journal Title:Anim Microbiome
Year:2021
Volume:20210518
Issue:1
Page Number:39 -
DOI: 10.1186/s42523-021-00093-5
ISSN/ISBN:2524-4671 (Electronic) 2524-4671 (Linking)
Abstract:"BACKGROUND: Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. This imbalance is particularly striking for folivores that fundamentally rely on gut microbiota for digestion, yet rarely receive sufficient dietary fiber in captivity. We examine the critically endangered Coquerel's sifaka (Propithecus coquereli), an anatomically specialized, rather than facultative, folivore that consumes a seasonal frugo-folivorous diet in the wild, but is provisioned predominantly with seasonal foliage and orchard vegetables in captivity. Using amplicon and metagenomic sequencing applied to fecal samples collected from two wild and one captive population (each comprising multiple groups), we clarify how dietary variation underlies the perturbational effect of captivity on the structure and function of this species' gut microbiota. RESULTS: The gut microbiota of wild sifakas varied by study population, most notably in community evenness and in the abundance of diet-associated microbes from Prevotellaeceae and Lachnospiraceae. Nevertheless, the differences among wild subjects were minor compared to those evident between wild and captive sifakas: Unusually, the consortia of captive sifakas were the most diverse, but lacked representation of endemic Bacteroidetes and metagenomic capacity for essential amino-acid biosynthesis. Instead, they were enriched for complex fiber metabolizers from the Firmicutes phylum, for archaeal methanogens, and for several metabolic pathways putatively linked to plant fiber and secondary compound metabolism. CONCLUSIONS: The relatively minor differences in gut microbial structure and function between wild sifaka populations likely reflect regional and/or temporal environmental variability, whereas the major differences observed in captive conspecifics, including the loss of endemic microbes, but gain in low-abundance taxa, likely reflect imbalanced or unstable consortia. Indeed, community perturbation may not necessarily entail decreased community diversity. Moreover, signatures of greater fiber degradation indicate that captive sifakas consume a more fibrous diet compared to their wild counterparts. These results do not mirror those typically reported for folivores and herbivores, suggesting that the direction and strength of captivity-induced 'dysbiosis' may not be universal across species with similar feeding strategies. We propose that tailored, species-specific dietary interventions in captivity, aimed at better approximating naturally foraged diets, could functionally 'rewild' gut microbiota and facilitate successful management of diverse species"
Keywords:Amplicon sequencing Captivity Folivory Gut microbiome Husbandry Lemur Madagascar Metagenomic sequencing Strepsirrhine primate;
Notes:"PubMed-not-MEDLINEGreene, Lydia K Blanco, Marina B Rambeloson, Elodi Graubics, Karlis Fanelli, Brian Colwell, Rita R Drea, Christine M eng BCS-1749898/Directorate for Social, Behavioral and Economic Sciences/ England 2021/05/20 Anim Microbiome. 2021 May 18; 3(1):39. doi: 10.1186/s42523-021-00093-5"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-11-2024