Title: | Evaluation of different getter substrates using two-dimensional gas chromatography with time of flight mass spectrometry |
Author(s): | Davis JT; Beaux MF; Freye CE; |
Address: | "Los Alamos National Laboratory, Q-5, High Explosives Science and Technology, Los Alamos, NM 87545, United States of America. Los Alamos National Laboratory, MST-7, Engineered Materials, Los Alamos, NM 87545, United States of America. Los Alamos National Laboratory, Q-5, High Explosives Science and Technology, Los Alamos, NM 87545, United States of America. Electronic address: cfreye@lanl.gov" |
DOI: | 10.1016/j.chroma.2022.463760 |
ISSN/ISBN: | 1873-3778 (Electronic) 0021-9673 (Linking) |
Abstract: | "While understanding hydrogen uptake by organic based getters such as 1,4-bis(phenylethynyl)benzene (DEB) combined with a palladium(0)bis(dibenzylideneacetone) (Pd(dba)(2)) catalyst is essential, another crucial element to understand is the decomposition of the DEB, Pd(dba)(2), and/or substrate material. The breakdown of these materials may create unwanted volatiles, which may interact with and lead to deterioration of sensitive materials. Moreover, it is critical to understand if different substrates cause the getter and/or catalyst to degrade in different manners. Utilizing comprehensive two-dimensional gas chromatography (GCxGC) with time-of-flight mass spectrometry (TOFMS), the presence of volatiles located in the headspace of various DEB/Pd(dba)(2) getter substrates is examined. These samples include a getter infused silicone foam, a hydrogenated getter infused silicone foam, an activated carbon getter pellet, and a hydrogenated activated carbon getter pellet. Application of Fisher ratio (F-ratio) analyses lead to the identification of several compounds that are generated or consumed through the hydrogenation process. These include benzene derivatives such as bibenzyl, benzaldehyde, and vinyl benzoate in the activated carbon pellets and 1,5-diphenyl-3-pentanone, toluene, styrene, and 1-1'(2-pentene 1,5-diyl)bis benzene in the silicone foams, and alkane/alkene derivatives such undecane, 4-tridecene, and decane in the activated carbon pellets and 2,6-dimethyl undecane in the silicone foams. Further comparison of the different hydrogenated getter substrates (e.g. activated carbon pellet and silicone foam) indicates that the different substrates alter the decomposition products created from the degradation of the DEB and Pd(dba)(2)" |
Keywords: | Gas Chromatography-Mass Spectrometry/methods *Benzene/analysis Charcoal *Volatile Organic Compounds/analysis Mass Spectrometry/methods Chemometrics GCxGC Getter; |
Notes: | "MedlineDavis, Jacob T Beaux, Miles F 2nd Freye, Chris E eng Netherlands 2023/01/10 J Chromatogr A. 2023 Jan 25; 1689:463760. doi: 10.1016/j.chroma.2022.463760. Epub 2022 Dec 28" |