Title: | A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings |
Address: | "Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore. bdgskw@nus.edu.sg. Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore. bdglw@nus.edu.sg" |
ISSN/ISBN: | 2079-4991 (Print) 2079-4991 (Electronic) 2079-4991 (Linking) |
Abstract: | "In order to improve the indoor air quality, volatile organic compounds (VOCs) can be removed via an efficient approach by using catalysts. This review proposed a comprehensive summary of various nanomaterials for thermal/photo-catalytic removal of VOCs. These representative materials are mainly categorized as carbon-based and metallic oxides materials, and their morphologies, synthesis techniques, and performances have been explained in detail. To improve the indoor and outdoor air quality, the catalytic nanomaterials can be utilized for emerging building applications such as VOC-reduction coatings, paints, air filters, and construction materials. Due to the characteristics of low cost, non-toxic and high chemical stability, metallic oxides such as TiO(2) and ZnO have been widely investigated for decades and dominate the application market of VOC-removal catalyst in buildings. Since other catalysts also showed brilliant performance and have been theoretically researched, they can be potential candidates for applications in future healthy buildings. This review will contribute to further knowledge and greater potential applications of promising VOC-reducing catalytic nanomaterials on healthier buildings for a better indoor and outdoor environment well-being" |
Keywords: | VOCs removal catalytic oxidation green application healthy buildings nanomaterials photocatalysis photocatalytic reactor thermal oxidation; |
Notes: | "PubMed-not-MEDLINEShah, Kwok Wei Li, Wenxin eng NRF2015NRF-POC001-0025/National Research Foundation Singapore/ Review Switzerland 2019/06/27 Nanomaterials (Basel). 2019 Jun 23; 9(6):910. doi: 10.3390/nano9060910" |