Title: | Remarkably simple sequence requirement of the M-factor pheromone of Schizosaccharomyces pombe |
Author(s): | Seike T; Yamagishi Y; Iio H; Nakamura T; Shimoda C; |
Address: | "Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan" |
DOI: | 10.1534/genetics.112.140483 |
ISSN/ISBN: | 1943-2631 (Electronic) 0016-6731 (Print) 0016-6731 (Linking) |
Abstract: | "The mating reaction is triggered by specific pheromones in a wide variety of organisms. Small peptides are used as mating pheromones in yeasts and fungi. In the fission yeast Schizosaccharomyces pombe, M-factor is a C terminally farnesylated nonapeptide secreted from M-cells, and its counterpart, P-factor, is a simple peptide composed of 23 amino acids. The primary structure requirements for the biological activity of pheromone peptides remain to be elucidated. Here, we conducted comprehensive substitution of each of the amino acids in M-factor peptide and inspected the mating ability of these missense mutants. Thirty-five sterile mutants were found among an array of 152 mutants with single amino acid substitutions. Mapping of the mutation sites clearly indicated that the sterile mutants were associated exclusively with four amino acid residues (VPYM) in the carboxyl-terminal half. In contrast, the substitution of four amino-terminal residues (YTPK) with any amino acid had no or only a slightly deleterious effect on mating. Furthermore, deletion of the three N-terminal residues caused no sterility, although truncation of a fourth residue had a marked effect. We conclude that a farnesylated hexapeptide (KVPYMC(Far)-OCH(3)) is the minimal M-factor that retains pheromone activity. At least 15 nonfunctional peptides were found to be secreted, suggesting that these mutant M-factor peptides are no longer recognized by the cognate receptor" |
Keywords: | "Amino Acid Sequence Cell Aggregation Conserved Sequence DNA-Binding Proteins Molecular Sequence Data Mutagenesis Mutation, Missense Peptides/*chemistry/genetics/*metabolism Pheromones/*chemistry/genetics/*metabolism Schizosaccharomyces/cytology/genetics/*;" |
Notes: | "MedlineSeike, Taisuke Yamagishi, Yoshikazu Iio, Hideo Nakamura, Taro Shimoda, Chikashi eng Research Support, Non-U.S. Gov't 2012/05/01 Genetics. 2012 Jul; 191(3):815-25. doi: 10.1534/genetics.112.140483. Epub 2012 Apr 27" |