Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSynthesis and insect attractant activity of fluorine-containing Pinus diterpenic amides and imines    Next AbstractVariability of environmental exposures to volatile organic compounds »

BMC Microbiol


Title:Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings
Author(s):Rao Y; Zeng L; Jiang H; Mei L; Wang Y;
Address:"College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China. State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China. College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China. wangyj@zafu.edu.cn"
Journal Title:BMC Microbiol
Year:2022
Volume:20220405
Issue:1
Page Number:88 -
DOI: 10.1186/s12866-022-02511-3
ISSN/ISBN:1471-2180 (Electronic) 1471-2180 (Linking)
Abstract:"BACKGROUND: The promotion of plant growth and suppression of plant disease using beneficial microorganisms is considered an alternative to the application of chemical fertilizers or pesticides in the field. RESULTS: A coconut-scented antagonistic Trichoderma strain LZ42, previously isolated from Ganoderma lucidum-cultivated soil, was investigated for biostimulatory and biocontrol functions in tomato seedlings. Morphological and phylogenetic analyses suggested that strain LZ42 is closely related to T. atroviride. Tomato seedlings showed increased aerial and root dry weights in greenhouse trials after treatment with T. atroviride LZ42 formulated in talc, indicating the biostimulatory function of this fungus. T. atroviride LZ42 effectively suppressed Fusarium wilt disease in tomato seedlings, with an 82.69% control efficiency, which is similar to that of the carbendazim treatment. The volatile organic compounds (VOCs) emitted by T. atroviride LZ42 were found to affect the primary root growth direction and promote the root growth of tomato seedlings in root Y-tube olfactometer assays. The fungal VOCs from T. atroviride LZ42 were observed to significantly inhibit F. oxysporum in a sandwiched Petri dish assay. SPME-GC-MS analysis revealed several VOCs emitted by T. atroviride LZ42; the dominant compound was tentatively identified as 6-pentyl-2H-pyran-2-one (6-PP). The VOC 6-PP exhibited a stronger ability to influence the direction of the primary roots of tomato seedlings but not the length of the primary roots. The inhibitory effect of 6-PP on F. oxysporum was the highest among the tested pure VOCs, showing a 50% effective concentration (EC(50)) of 5.76 muL mL(-1) headspace. CONCLUSIONS: Trichoderma atroviride LZ42, which emits VOCs with multiple functions, is a promising agent for the biostimulation of vegetable plants and integrated management of Fusarium wilt disease"
Keywords:*Fusarium Hypocreales *Solanum lycopersicum Phylogeny Plant Diseases/microbiology/prevention & control Seedlings/microbiology *Trichoderma *Volatile Organic Compounds/pharmacology 6-pentyl-2H-pyran-2-one Biocontrol Biostimulation Inhibitory effect;
Notes:"MedlineRao, Yuxin Zeng, Linzhou Jiang, Hong Mei, Li Wang, Yongjun eng Research Support, Non-U.S. Gov't England 2022/04/07 BMC Microbiol. 2022 Apr 5; 22(1):88. doi: 10.1186/s12866-022-02511-3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024