Title: | The particle phase state during the biomass burning events |
Author(s): | Liu Y; Meng X; Wu Z; Huang D; Wang H; Chen J; Chen J; Zong T; Fang X; Tan T; Zhao G; Chen S; Zeng L; Guo S; Huang X; He L; Zeng L; Hu M; |
Address: | "State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China. Electronic address: zhijunwu@pku.edu.cn. State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China. Shenzhen Graduate School, Peking University, Shenzhen 518055, China" |
DOI: | 10.1016/j.scitotenv.2021.148035 |
ISSN/ISBN: | 1879-1026 (Electronic) 0048-9697 (Linking) |
Abstract: | "The phase state of biomass burning aerosols (BBA) remains largely unclear, impeding our understanding of their effects on air quality, climate and human health, due to its profound roles in mass transfer between gaseous and particulate phase. In this study, the phase state of BBA was investigated by measuring the particle rebound fraction f combining field observations and laboratory experiments. We found that both ambient and laboratory-generated BBA had unexpectedly lower rebound fraction f (<0.6) under the dry conditions (RH = 20-50%), indicating that BBA were in non-solid state at such low RH. This was obviously different from the secondary organic aerosols (SOA) derived from the oxidation of both anthropogenic and biogenic volatile organic compounds, typically with a rebound fraction f larger than 0.8 at RH below 50%. Therefore, we proposed that the diffusion coefficient of gaseous molecular in the bulk of BBA might be much higher than SOA under the dry conditions" |
Keywords: | Aerosols/analysis *Air Pollutants/analysis *Air Pollution Biomass Climate Humans *Volatile Organic Compounds/analysis Biomass burning aerosols Diffusion coefficient Particle rebound Phase state; |
Notes: | "MedlineLiu, Yuechen Meng, Xiangxinyue Wu, Zhijun Huang, Dandan Wang, Hongli Chen, Jie Chen, Jingchuan Zong, Taomou Fang, Xin Tan, Tianyi Zhao, Gang Chen, Shiyi Zeng, Liwu Guo, Song Huang, Xiaofeng He, Lingyan Zeng, Limin Hu, Min eng Netherlands 2021/06/22 Sci Total Environ. 2021 Oct 20; 792:148035. doi: 10.1016/j.scitotenv.2021.148035. Epub 2021 Jun 1" |