Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

BiochemtechIPM
Alphascents
Pherobio
InsectScience
E-Econex
Semiochemical
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSignalling in systemic plant defence - roots put in hard graft    Next AbstractRecovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber »

PLoS Pathog


Title:Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?
Author(s):Groen SC; Jiang S; Murphy AM; Cunniffe NJ; Westwood JH; Davey MP; Bruce TJ; Caulfield JC; Furzer OJ; Reed A; Robinson SI; Miller E; Davis CN; Pickett JA; Whitney HM; Glover BJ; Carr JP;
Address:"Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom. Rothamsted Research, Harpenden, Hertfordshire, United Kingdom. University of Bristol, School of Biological Sciences, Bristol, United Kingdom"
Journal Title:PLoS Pathog
Year:2016
Volume:20160811
Issue:8
Page Number:e1005790 -
DOI: 10.1371/journal.ppat.1005790
ISSN/ISBN:1553-7374 (Electronic) 1553-7366 (Print) 1553-7366 (Linking)
Abstract:"Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance, allowing genes for disease susceptibility to persist in plant populations. We speculate that enhanced pollinator service for infected individuals in wild plant populations might provide mutual benefits to the virus and its susceptible hosts"
Keywords:"Animals Arabidopsis/physiology/*virology Bees/*physiology *Cucumovirus Feeding Behavior/physiology Gas Chromatography-Mass Spectrometry Solanum lycopersicum/physiology/*virology Models, Theoretical Plant Diseases/virology Pollination/physiology Volatile O;"
Notes:"MedlineGroen, Simon C Jiang, Sanjie Murphy, Alex M Cunniffe, Nik J Westwood, Jack H Davey, Matthew P Bruce, Toby J A Caulfield, John C Furzer, Oliver J Reed, Alison Robinson, Sophie I Miller, Elizabeth Davis, Christopher N Pickett, John A Whitney, Heather M Glover, Beverley J Carr, John P eng BB/J011762/1/Biotechnology and Biological Sciences Research Council/United Kingdom Research Support, Non-U.S. Gov't 2016/08/12 PLoS Pathog. 2016 Aug 11; 12(8):e1005790. doi: 10.1371/journal.ppat.1005790. eCollection 2016 Aug"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-01-2025