Title: | "Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi" |
Author(s): | El-Borai FE; Campos-Herrera R; Stuart RJ; Duncan LW; |
Address: | "Entomology and Nematology Department, University of Florida, IFAS, Citrus Research and Education Center,700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA" |
DOI: | 10.1016/j.jip.2010.12.001 |
ISSN/ISBN: | 1096-0805 (Electronic) 0022-2011 (Linking) |
Abstract: | "Laboratory experiments were conducted on the behavioral responses of five species of entomopathogenic nematodes (EPNs; Steinernema diaprepesi, Steinernema sp. glaseri-group, Steinernema riobrave, Heterorhabditis zealandica, Heterorhabditis indica) to three species of nematophagous fungi (NF; trapping fungus Arthrobotrys gephyropaga; endoparasites Myzocytium sp., Catenaria sp.). We hypothesized that EPN responses to NF and their putative semiochemicals might reflect the relative susceptibility of EPNs to particular NF species. EPN responses to 'activated' NF (i.e., induced to form traps or sporangia by previous interactions with nematodes) versus controls of non-activated NF or heat-killed EPNs were compared in choice experiments on water agar in Petri dishes (dia=9 cm) and in horizontal sand columns (8 cm Lx2.7 cm dia). On agar, all EPN species were attracted to all activated NF species except for S. riobrave, which was neutral. In sand, all EPN species were repelled by activated Arthrobotrys but attracted to activated Myzocytium and Catenaria, except H. indica (neutral to Myzocytium) and Steinernema sp. (neutral to Catenaria). EPN behavioral responses appeared unrelated to relative susceptibility to NF except that H. indica exhibited low susceptibility and a neutral response to Myzocytium in sand whereas the remaining EPNs were highly susceptible and attracted. These results indicate potential complexity (i.e., mixed responses, aggregation or group movement) and species specificity in the responses of EPNs to NF, demonstrate that results on agar can differ markedly from those in sand, and underline the potential importance of utilizing natural substrates to properly assess the role of semiochemicals in nematode-fungus interactions" |
Keywords: | "Agar Animals Ascomycota/*physiology *Behavior, Animal Host-Pathogen Interactions Pheromones/physiology Rhabditida/*microbiology/physiology Silicon Dioxide Species Specificity;" |
Notes: | "MedlineEl-Borai, Fahiem E Campos-Herrera, Raquel Stuart, Robin J Duncan, Larry W eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2010/12/15 J Invertebr Pathol. 2011 Mar; 106(3):347-56. doi: 10.1016/j.jip.2010.12.001. Epub 2010 Dec 8" |