Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSmoking Influences Fecal Volatile Organic Compounds Composition    Next AbstractVolatile Constituents from Catasetum (Orchidaceae) Species with Occurrence in the Brazilian Amazon »

Rapid Commun Mass Spectrom


Title:Stable isotope analysis of dissolved organic carbon in soil solutions using a catalytic combustion total organic carbon analyzer-isotope ratio mass spectrometer with a cryofocusing interface
Author(s):De Troyer I; Bouillon S; Barker S; Perry C; Coorevits K; Merckx R;
Address:"Division Soil and Water Management, Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium. inne.detroyer@gmail.com"
Journal Title:Rapid Commun Mass Spectrom
Year:2010
Volume:24
Issue:3
Page Number:365 - 374
DOI: 10.1002/rcm.4403
ISSN/ISBN:1097-0231 (Electronic) 0951-4198 (Linking)
Abstract:"Stable carbon isotopes are a powerful tool to assess the origin and dynamics of carbon in soils. However, direct analysis of the (13)C/(12)C ratio in the dissolved organic carbon (DOC) pool has proved to be difficult. Recently, several systems have been developed to measure isotope ratios in DOC by coupling a total organic carbon (TOC) analyzer with an isotope ratio mass spectrometer. However these systems were designed for the analysis of fresh and marine water and no results for soil solutions or (13)C-enriched samples have been reported. Because we mainly deal with soil solutions in which the difficult to oxidize humic and fulvic acids are the predominant carbon-containing components, we preferred to use thermal catalytic oxidation to convert DOC into CO(2). We therefore coupled a high-temperature combustion TOC analyzer with an isotope ratio mass spectrometer, by trapping and focusing the CO(2) cryogenically between the instruments. The analytical performance was tested by measuring solutions of compounds varying in the ease with which they can be oxidized. Samples with DOC concentrations between 1 and 100 mg C/L could be analyzed with good precision (standard deviation (SD) < or = 0.6 per thousand), acceptable accuracy, good linearity (overall SD = 1 per thousand) and without significant memory effects. In a (13)C-tracer experiment, we observed that mixing plant residues with soil caused a release of plant-derived DOC, which was degraded or sorbed during incubation. Based on these results, we are confident that this approach can become a relatively simple alternative method for the measurement of the (13)C/(12)C ratio of DOC in soil solutions"
Keywords:
Notes:"PubMed-not-MEDLINEDe Troyer, I Bouillon, S Barker, S Perry, C Coorevits, K Merckx, R eng England 2010/01/09 Rapid Commun Mass Spectrom. 2010 Feb; 24(3):365-74. doi: 10.1002/rcm.4403"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024