Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVolatile Organic Compound Profile Fingerprints Using DART-MS Shows Species-Specific Patterns in Fusarium Mycotoxin Producing Fungi    Next AbstractProtein secretion in yeast: Two chromosomal mutants that oversecrete killer toxin in Saccharomyces cerevisiae »

Environ Pollut


Title:Parasite susceptibility in an amphibian host is modified by salinization and predators
Author(s):Buss N; Hua J;
Address:"Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, United States. Electronic address: nbuss1@binghamton.edu. Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, United States"
Journal Title:Environ Pollut
Year:2018
Volume:236
Issue:
Page Number:754 - 763
DOI: 10.1016/j.envpol.2018.01.060
ISSN/ISBN:1873-6424 (Electronic) 0269-7491 (Linking)
Abstract:"Secondary salinization represents a global threat to freshwater ecosystems. Salts, such as NaCl, can be toxic to freshwater organisms and may also modify the outcome of species interactions (e.g. host-parasite interactions). In nature, hosts and their parasites are embedded in complex communities where they face anthropogenic and biotic (i.e. predators) stressors that influence host-parasite interactions. As human populations grow, considering how anthropogenic and natural stressors interact to shape host-parasite interactions will become increasingly important. We conducted two experiments investigating: (1) the effects of NaCl on tadpole susceptibility to trematodes and (2) whether density- and trait-mediated effects of a parasite-predator (i.e. damselfly) and a host-predator (i.e. dragonfly), respectively, modify the effects of NaCl on susceptibility to trematode infection. In the first experiment, we exposed tadpoles to three concentrations of NaCl and measured parasite infection in tadpoles. In the second experiment, we conducted a 2 (tadpoles exposed to 0?ª+g?ª+L(-1) NaCl vs. 1?ª+g?ª+L(-1) NaCl) x 4 (no predator, free-ranging parasite-predator (damselfly), non-lethal host-predator (dragonfly kairomone), and free-ranging parasite-predator + dragonfly kairomone) factorial experiment. In the absence of predators, exposure to NaCl increased parasite infection. Of the predator treatments, NaCl only caused an increase in parasite infection in the presence of the parasite-predator. However, direct consumption of trematodes caused a reduction in overall infection in the parasite-predator treatment. In the dragonfly kairomone treatment, a reduction in tadpole movement (i.e. trematode avoidance behavior) led to an increase in overall infection. In the parasite-predator + dragonfly kairomone treatment, antagonistic effects of the parasite-predator (reduction in trematode abundance) and dragonfly kairomone (reduction in parasite avoidance behavior) resulted in intermediate parasite infection. Collectively, these findings demonstrate that NaCl can increase amphibian susceptibility to parasites, and underscores the importance of considering predator-mediated interactions in understanding how contaminants influence host-parasite interactions"
Keywords:"Amphibians/*parasitology Animals Ecosystem Environmental Monitoring Fresh Water *Host-Parasite Interactions Larva/drug effects Odonata/parasitology Parasites Predatory Behavior *Salinity *Stress, Physiological Density-mediated effects Host-parasite intera;"
Notes:"MedlineBuss, Nicholas Hua, Jessica eng England 2018/02/20 Environ Pollut. 2018 May; 236:754-763. doi: 10.1016/j.envpol.2018.01.060"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025