Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPotential of MurA Enzyme and GBAP in Fsr Quorum Sensing System as Antibacterial Drugs Target: In vitro and In silico Study of Antibacterial Compounds from Myrmecodia pendans    Next AbstractPlant volatiles: new perspectives for research in Brazil »

Oecologia


Title:Pathogen-activated induced resistance of cucumber: response of arthropod herbivores to systemically protected leaves
Author(s):Apriyanto D; Potter DA;
Address:"Department of Entomology, University of Kentucky, 40546-0091, Lexington, KY, USA"
Journal Title:Oecologia
Year:1990
Volume:85
Issue:1
Page Number:25 - 31
DOI: 10.1007/BF00317339
ISSN/ISBN:1432-1939 (Electronic) 0029-8549 (Linking)
Abstract:"Restricted (non-systemic) inoculation of cucurbits, green bean, tobacco, and other plants with certain viruses, bacteria, or fungi has been shown to induce persistent, systemic resistance to a wide range of diseases caused by diverse pathogens. The non-specificity of this response has fueled speculation that it may also affect plant suitability for arthropod herbivores, and there is limited evidence, mainly from work with tobacco, which suggests that this may indeed occur. Young cucumber plants were immunized by restricted infection of a lower leaf with tobacco necrosis virus (TNV), and upper leaves were later challenged with anthracnose fungus, Colletotrichum lagenarium, to confirm induction of systemic resistance to a different pathogen. The response of arthropod herbivores was simultaneously measured on non-infected, systemically protected leaves of the same plants. As has been reported before, immunization with TNV gave a high degree of protection from C. lagenarium, reducing the number of lesions and the area of fungal necrosis by 65-93%. However, there was no systemic effect on population growth of twospotted spider mites, Tetranychus urticae Koch, on upper leaves, nor did restricted TNV infection of leaf tissue on one side of the mid-vein systemically affect mite performance on the opposite, virus-free side of the leaf. Similarly, there were no effects on growth rate, pupal weight, or survival when fall armyworm larvae were reared on systemically protected leaves from induced plants. In free-choice tests, greenhouse whiteflies oviposited indiscriminately on induced and control plants. Feeding preference of fall armyworms was variable, but striped cucumber beetles consistently fed more on induced than on control plants. There was no increase in levels of cucurbitacins, however, in systemically-protected foliage of induced plants. These findings indicate that pathogen-activated induced resistance of cucumber is unlikely to provide significant protection from herbivory. The mechanisms and specificity of induced resistance in cucurbits apparently differ in response to induction by pathogens or herbivores"
Keywords:Cucumis sativus Herbivory Insect/microbial interactions Plant defense;
Notes:"PubMed-not-MEDLINEApriyanto, Dwinardi Potter, Daniel A eng Germany 1990/11/01 Oecologia. 1990 Nov; 85(1):25-31. doi: 10.1007/BF00317339"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-11-2024