Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Effects of cultured Astragalus adsurgens root on other plants growth]    Next AbstractField-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects »

Plant Physiol


Title:Heterologous expression of methylketone synthase1 and methylketone synthase2 leads to production of methylketones and myristic acid in transgenic plants
Author(s):Yu G; Pichersky E;
Address:"Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109"
Journal Title:Plant Physiol
Year:2014
Volume:20140103
Issue:2
Page Number:612 - 622
DOI: 10.1104/pp.113.228502
ISSN/ISBN:1532-2548 (Electronic) 0032-0889 (Print) 0032-0889 (Linking)
Abstract:"Some plants produce methylketones as potent defense compounds against various insects. Wild tomato (Solanum habrochaites), a relative of the cultivated tomato (Solanum lycopersicum), synthesizes large amounts of 2-methylketones in its glandular trichomes, but cultivated tomato trichomes contain little or no methylketones. Two enzymes, Solanum habrochaites methylketone synthase1 (ShMKS1) and ShMKS2, are required to convert beta-ketoacyl acyl-carrier protein intermediates of the fatty acid biosynthetic pathway to methylketones. ShMKS2 is a thioesterase that hydrolyzes beta-ketoacyl acyl-carrier protein, and ShMKS1 is a decarboxylase that converts the resulting 3-ketoacids to 2-methylketones. We introduced ShMKS2 by itself or together with ShMKS1 to Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and cultivated tomato under the control of the 35S, Rubisco small subunit, and tomato trichome-specific promoters. Young tobacco and Arabidopsis plants expressing both genes under the control of 35S and Rubisco small subunit promoters produced methylketones in their leaves but had serious growth defects. As plants matured, they ceased to produce methylketones. Tobacco plants but not Arabidopsis or tomato plants expressing only ShMKS2 under the 35S promoter also synthesized methylketones, but at a lower rate. Transgenic cultivated tomato plants expressing ShMKS1 and ShMKS2 under trichome-specific promoters had slightly elevated levels of methylketone. Trace amounts of myristic acid were also detected in transgenic plants constitutively expressing ShMKS2 with or without ShMKS1. These results suggest that increases in methylketone production in plants will require the targeting of the pathway to self-contained structures in the plant and may also require increasing the flux of fatty acid biosynthesis"
Keywords:"Arabidopsis/*genetics Carboxy-Lyases/genetics/*metabolism Gas Chromatography-Mass Spectrometry Gene Expression Regulation, Enzymologic Gene Expression Regulation, Plant Ketones/*metabolism Myristic Acid/*metabolism Phenotype Plant Leaves/enzymology Plant;"
Notes:"MedlineYu, Geng Pichersky, Eran eng Research Support, U.S. Gov't, Non-P.H.S. 2014/01/07 Plant Physiol. 2014 Feb; 164(2):612-22. doi: 10.1104/pp.113.228502. Epub 2014 Jan 3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024