Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"(3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, major sex pheromone component of the tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae)"    Next AbstractDegradation of a model azo dye in submerged anaerobic membrane bioreactor (SAMBR) operated with powdered activated carbon (PAC) »

J Biol Chem


Title:A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs
Author(s):Baerson SR; Dayan FE; Rimando AM; Nanayakkara NPD; Liu CJ; Schroder J; Fishbein M; Pan Z; Kagan IA; Pratt LH; Cordonnier-Pratt MM; Duke SO;
Address:"United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677. Electronic address: sbaerson@ars.usda.gov. United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677. National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677. Biology Department, Brookhaven National Laboratory, Upton, New York 11973. Universitat Freiburg, Institut fur Biologie II, Schanzlestrasse 1, D-79104 Freiburg, Germany. Department of Biology, Portland State University, Portland, Oregon 97207. Department of Plant Biology, University of Georgia, Athens, Georgia 30602"
Journal Title:J Biol Chem
Year:2008
Volume:20071112
Issue:6
Page Number:3231 - 3247
DOI: 10.1074/jbc.M706587200
ISSN/ISBN:0021-9258 (Print) 0021-9258 (Linking)
Abstract:"Sorghum is considered to be one of the more allelopathic crop species, producing phytotoxins such as the potent benzoquinone sorgoleone (2-hydroxy-5-methoxy-3-[(Z,Z)-8',11',14'-pentadecatriene]-p-benzoquinone) and its analogs. Sorgoleone likely accounts for much of the allelopathy of Sorghum spp., typically representing the predominant constituent of Sorghum bicolor root exudates. Previous and ongoing studies suggest that the biosynthetic pathway for this plant growth inhibitor occurs in root hair cells, involving a polyketide synthase activity that utilizes an atypical 16:3 fatty acyl-CoA starter unit, resulting in the formation of a pentadecatrienyl resorcinol intermediate. Subsequent modifications of this resorcinolic intermediate are likely to be mediated by S-adenosylmethionine-dependent O-methyltransferases and dihydroxylation by cytochrome P450 monooxygenases, although the precise sequence of reactions has not been determined previously. Analyses performed by gas chromatography-mass spectrometry with sorghum root extracts identified a 3-methyl ether derivative of the likely pentadecatrienyl resorcinol intermediate, indicating that dihydroxylation of the resorcinol ring is preceded by O-methylation at the 3'-position by a novel 5-n-alk(en)ylresorcinol-utilizing O-methyltransferase activity. An expressed sequence tag data set consisting of 5,468 sequences selected at random from an S. bicolor root hair-specific cDNA library was generated to identify candidate sequences potentially encoding enzymes involved in the sorgoleone biosynthetic pathway. Quantitative real time reverse transcription-PCR and recombinant enzyme studies with putative O-methyltransferase sequences obtained from the expressed sequence tag data set have led to the identification of a novel O-methyltransferase highly and predominantly expressed in root hairs (designated SbOMT3), which preferentially utilizes alk(en)ylresorcinols among a panel of benzene-derivative substrates tested. SbOMT3 is therefore proposed to be involved in the biosynthesis of the allelochemical sorgoleone"
Keywords:"*Alleles Amino Acid Sequence Benzoquinones/chemistry Escherichia coli/metabolism Expressed Sequence Tags Genes, Plant *Genomics Lipids/chemistry Mass Spectrometry/methods Molecular Sequence Data Pheromones/*chemistry Phylogeny Plant Roots/*metabolism Reco;"
Notes:"MedlineBaerson, Scott R Dayan, Franck E Rimando, Agnes M Nanayakkara, N P Dhammika Liu, Chang-Jun Schroder, Joachim Fishbein, Mark Pan, Zhiqiang Kagan, Isabelle A Pratt, Lee H Cordonnier-Pratt, Marie-Michele Duke, Stephen O eng 2007/11/14 J Biol Chem. 2008 Feb 8; 283(6):3231-3247. doi: 10.1074/jbc.M706587200. Epub 2007 Nov 12"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024