Title: | The influence of manganese-cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate) |
Author(s): | Wang D; Zhang Q; Zhou K; Yang W; Hu Y; Gong X; |
Address: | "State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China. State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China; USTC-CityU Joint Advanced Research Centre, Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren'ai Road, Suzhou, Jiangsu 215123, PR China. Electronic address: yuanhu@ustc.edu.cn. State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China; CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address: gongxl@ustc.edu.cn" |
DOI: | 10.1016/j.jhazmat.2014.05.072 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "By means of direct nucleation and growth on the surface of graphene and element doping of cobalt oxide (Co3O4) nano-particles, manganese-cobalt oxide/graphene hybrids (MnCo2O4-GNS) were synthesized to reduce fire hazards of poly(butylene terephthalate) (PBT). The structure, elemental composition and morphology of the obtained hybrids were surveyed by X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy, respectively. Thermogravimetric analysis was applied to simulate and study the influence of MnCo2O4-GNS hybrids on thermal degradation of PBT during combustion. The fire hazards of PBT and its composites were assessed by the cone calorimeter. The cone test results had showed that peak HRR and SPR values of MnCo2O4-GNS/PBT composites were lower than that of pure PBT and Co3O4-GNS/PBT composites. Furthermore, the incorporation of MnCo2O4-GNS hybrids gave rise to apparent decrease of pyrolysis products containing aromatic compounds, carbonyl compounds, carbon monoxide and carbon dioxide, attributed to combined impact of physical barrier for graphene and cat O4 for organic volatiles and carbon monoxide" |
Keywords: | Cobalt/*chemistry Fires/prevention & control Graphite/*chemistry Manganese/*chemistry Nanocomposites/*chemistry Oxides/*chemistry Polyesters/*chemistry Smoke MnCo(2)O(4)-GNS hybrids Nanocomposites Poly(butylene terephthalate) Smoke hazards Thermal hazards; |
Notes: | "MedlineWang, Dong Zhang, Qiangjun Zhou, Keqing Yang, Wei Hu, Yuan Gong, Xinglong eng Research Support, Non-U.S. Gov't Netherlands 2014/07/06 J Hazard Mater. 2014 Aug 15; 278:391-400. doi: 10.1016/j.jhazmat.2014.05.072. Epub 2014 Jun 2" |