Title: | Improving pulsed radiofrequency glow discharge for time-of-flight mass spectrometry simultaneous elemental and molecular analysis |
Author(s): | Sola-Vazquez A; Fernandez B; Costa-Fernandez JM; Pereiro R; Sanz-Medel A; |
Address: | "Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria, 8, 33006, Oviedo, Spain" |
DOI: | 10.1007/s00216-014-7613-2 |
ISSN/ISBN: | 1618-2650 (Electronic) 1618-2642 (Linking) |
Abstract: | "The performance of radiofrequency (rf) millisecond pulsed glow discharge (PGD) coupled to a fast orthogonal time-of-flight mass spectrometer (TOFMS) for chemical characterization and quantification of organic volatile compounds was investigated by using two different GD chamber designs. The designs investigated had substantial differences in the way that the volatile organic compound is introduced into the GD and the distance between the cathode and the sampling cone of the mass spectrometer. Bromochloromethane was selected as the model analyte because of the practical interest of determining trihalomethanes at low concentrations, and also because of both its low boiling point (to avoid problems associated with condensations in the interface) and the fact that it has two different heteroatoms, making the fragmentation patterns easier to follow. Pulse shapes of element, fragment, and molecular parent ions obtained by using the two GD chambers under investigation were critically compared. Results revealed the critical effect of the GD chamber geometry in obtaining the three types of chemical information, temporally discriminated. The spectra of the gaseous samples and of a polymer containing TBBPA (solid sample) were also compared. Detection limits for bromochloromethane in the order of low ng L(-1), and the required high tolerance of the plasmas to the introduction of organic vapours, were achieved using one of the proposed GD designs. The capability of the designed system for the analysis of other volatile compounds, for example dimethyl disulfide and dimethyl selenide, was also successfully evaluated, making use of the analytical potential of the information obtained from the different pulse time regions" |
Notes: | "PubMed-not-MEDLINESola-Vazquez, Auristela Fernandez, Beatriz Costa-Fernandez, Jose M Pereiro, Rosario Sanz-Medel, Alfredo eng Germany 2014/02/13 Anal Bioanal Chem. 2014 Nov; 406(29):7431-43. doi: 10.1007/s00216-014-7613-2. Epub 2014 Feb 12" |