Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Biological traits of the predatory mirid Macrolophus praeclarus, a candidate biocontrol agent for the Neotropical region"    Next AbstractIndividual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting »

Rapid Commun Mass Spectrom


Title:Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry
Author(s):Perez-Hurtado P; Palmer E; Owen T; Aldcroft C; Allen MH; Jones J; Creaser CS; Lindley MR; Turner MA; Reynolds JC;
Address:"Centre for Analytical Science, Department of Chemistry, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK. Advion Ltd, Kao Hockham Building, Edinburgh Way, Harlow, CM20 2NQ, UK. Advion Inc., 10 Brown Road, Suite 101, Ithaca, NY, 14850, USA. School of Sports, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK"
Journal Title:Rapid Commun Mass Spectrom
Year:2017
Volume:31
Issue:22
Page Number:1947 - 1956
DOI: 10.1002/rcm.7975
ISSN/ISBN:1097-0231 (Electronic) 0951-4198 (Print) 0951-4198 (Linking)
Abstract:"RATIONALE: The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump-based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. METHODS: Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. RESULTS: The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 mug/mL and 1.316 mug/mL, respectively. CONCLUSIONS: The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats"
Keywords:Animals Atmospheric Pressure Biogenic Amines/analysis Cheese/analysis Cluster Analysis Equipment Design Fatty Acids/analysis Food Analysis/*methods Mass Spectrometry/instrumentation/*methods Meat/analysis Multivariate Analysis Swine Volatile Organic Compo;
Notes:"MedlinePerez-Hurtado, P Palmer, E Owen, T Aldcroft, C Allen, M H Jones, J Creaser, C S Lindley, M R Turner, M A Reynolds, J C eng England 2017/09/01 Rapid Commun Mass Spectrom. 2017 Nov 30; 31(22):1947-1956. doi: 10.1002/rcm.7975"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024