Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Atmospheric carbonyls in a heavy ozone pollution episode at a metropolis in Southwest China: Characteristics, health risk assessment, sources analysis"    Next AbstractFunctional Characterization of Terpene Synthases Accounting for the Volatilized-Terpene Heterogeneity in Lathyrus odoratus Cultivar Flowers »

Eukaryot Cell


Title:Multisite phosphorylation of the Saccharomyces cerevisiae filamentous growth regulator Tec1 is required for its recognition by the E3 ubiquitin ligase adaptor Cdc4 and its subsequent destruction in vivo
Author(s):Bao MZ; Shock TR; Madhani HD;
Address:"Department of Biochemistry and Biophysics, University of California, 600 16th St., MC2200, San Francisco, CA 94158-2200, USA"
Journal Title:Eukaryot Cell
Year:2010
Volume:20091106
Issue:1
Page Number:31 - 36
DOI: 10.1128/EC.00250-09
ISSN/ISBN:1535-9786 (Electronic) 1535-9778 (Print) 1535-9786 (Linking)
Abstract:"In Saccharomyces cerevisiae, the pheromone-induced ubiquitylation and degradation of the filamentation pathway-specific activator, Tec1, suppresses cross talk between the mating and filamentous growth mitogen-activated protein kinase (MAPK) pathways. The mating pathway MAPK, Fus3, phosphorylates Tec1, resulting in its recognition by the SCF (for Skp1, Cullin, F-box containing) E3 ubiquitin ligase complex, leading to its proteolysis. Previously, it was found that Tec1 destruction requires phosphorylation on threonine 273 (T273). T273 is embedded in the sequence LLpTP, which is identical to the canonical binding site for Cdc4, a conserved F-box substrate adaptor for the SCF complex. However, recent work on both Cdc4 and the human Cdc4 ortholog Fbw7 has shown that a second substrate phosphorylation can be required for optimal Cdc4 binding in vitro. We report here that high-affinity binding of recombinant Cdc4 to Tec1 phosphopeptides requires phosphorylation of not only T273 but also a second site, T276. Significantly, both phospho-sites on Tec1 and a conserved basic pocket on Cdc4 are critical for Tec1 proteolysis in response to pheromone treatment of cells, establishing a role for two-phosphate recognition by yeast Cdc4 in substrate targeting in vivo"
Keywords:"Amino Acid Sequence Animals Cell Cycle Proteins/genetics/*metabolism DNA-Binding Proteins/genetics/*metabolism F-Box Proteins/genetics/*metabolism Humans Molecular Sequence Data Peptides/genetics/metabolism Phosphorylation Promoter Regions, Genetic Recomb;"
Notes:"MedlineBao, Marie Z Shock, Teresa R Madhani, Hiten D eng R01 GM063670/GM/NIGMS NIH HHS/ GM63670/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2009/11/10 Eukaryot Cell. 2010 Jan; 9(1):31-6. doi: 10.1128/EC.00250-09. Epub 2009 Nov 6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024