Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFinding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar    Next AbstractNectar chemistry is tailored for both attraction of mutualists and protection from exploiters »

PLoS One


Title:How Nectar-Feeding Bats Localize their Food: Echolocation Behavior of Leptonycteris yerbabuenae Approaching Cactus Flowers
Author(s):Gonzalez-Terrazas TP; Koblitz JC; Fleming TH; Medellin RA; Kalko EK; Schnitzler HU; Tschapka M;
Address:"Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany. BioAcoustics Network, Neuss, Germany. Department of Biology, University of Miami, Miami, Florida, United States of America. Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Mexico D. F., Mexico. Smithsonian Tropical Research Institute, Balboa, Panama. Animal Physiology, Institute of Neurobiology, University of Tubingen, Tubingen, Germany"
Journal Title:PLoS One
Year:2016
Volume:20160929
Issue:9
Page Number:e0163492 -
DOI: 10.1371/journal.pone.0163492
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Nectar-feeding bats show morphological, physiological, and behavioral adaptations for feeding on nectar. How they find and localize flowers is still poorly understood. While scent cues alone allow no precise localization of a floral target, the spatial properties of flower echoes are very precise and could play a major role, particularly at close range. The aim of this study is to understand the role of echolocation for classification and localization of flowers. We compared the approach behavior of Leptonycteris yerbabuenae to flowers of a columnar cactus, Pachycereus pringlei, to that to an acrylic hollow hemisphere that is acoustically conspicuous to bats, but has different acoustic properties and, contrary to the cactus flower, present no scent. For recording the flight and echolocation behaviour we used two infrared video cameras under stroboscopic illumination synchronized with ultrasound recordings. During search flights all individuals identified both targets as a possible food source and initiated an approach flight; however, they visited only the cactus flower. In experiments with the acrylic hemisphere bats aborted the approach at ca. 40-50 cm. In the last instant before the flower visit the bats emitted a long terminal group of 10-20 calls. This is the first report of this behaviour for a nectar-feeding bat. Our findings suggest that L. yerbabuenae use echolocation for classification and localization of cactus flowers and that the echo-acoustic characteristics of the flower guide the bats directly to the flower opening"
Keywords:
Notes:"PubMed-not-MEDLINEGonzalez-Terrazas, Tania P Koblitz, Jens C Fleming, Theodore H Medellin, Rodrigo A Kalko, Elisabeth K V Schnitzler, Hans-Ulrich Tschapka, Marco eng 2016/09/30 PLoS One. 2016 Sep 29; 11(9):e0163492. doi: 10.1371/journal.pone.0163492. eCollection 2016"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025