Title: | Thermal-Driven Optimization of the Strong Metal-Support Interaction of a Platinum-Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt(2+)-O(v)-Mn(delta) |
Author(s): | Zhang L; Zhu Z; Tan W; Ji J; Cai Y; Tong Q; Xiong Y; Wan H; Dong L; |
Address: | "State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China. School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China. School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "Strong metal-support interactions (SMSIs) have a significant effect on the performance of supported noble-metal catalysts for volatile organic compound (VOC) elimination. Herein, the strength of the SMSI of Pt/OMS-2 between Pt and the OMS-2 support is regulated by simply changing calcination temperatures, and the catalyst calcined at 300 degrees C (Pt/OMS-2-300) performs the best in the catalytic combustion of toluene. Through systematic structural characterizations, it is revealed that much more Pt(2+)-O(v)-Mn(delta+) species are formed in Pt/OMS-2-300, which can help facilitate the generation of more reactive oxygen species and promote lattice oxygen mobility. Moreover, the results of in situ DRIFTS experiments further confirm that abundant Pt(2+)-O(v)-Mn(delta+) species at the Pt-MnO(2) interface on Pt/OMS-2-300 can better enhance the adsorption and activation of toluene, thus boosting the catalytic performance in toluene combustion. This newly developed strategy of thermal-driven regulation of the SMSI provides a novel perspective for constructing highly efficient catalysts for VOC emission control" |
Keywords: | Pt/OMS-2 reactive oxygen species strong metal-support interaction thermal-driven toluene oxidation; |
Notes: | "PubMed-not-MEDLINEZhang, Lixin Zhu, Zhengxuan Tan, Wei Ji, Jiawei Cai, Yandi Tong, Qing Xiong, Yan Wan, Haiqin Dong, Lin eng 2022/12/17 ACS Appl Mater Interfaces. 2022 Dec 28; 14(51):56790-56800. doi: 10.1021/acsami.2c16923. Epub 2022 Dec 16" |