Title: | Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation |
Author(s): | Park DM; Bae JH; Kim MS; Kim H; Kang SD; Shim S; Lee D; Seo JH; Kang H; Han NS; |
Address: | "Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea. Research Institute of Food and Biotechnology, SPC Group, Seoul 08826, Republic of Korea. Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea" |
ISSN/ISBN: | 1738-8872 (Electronic) 1017-7825 (Linking) |
Abstract: | "In sourdough fermentation, lactic acid bacteria perform important roles in the production of volatile and antimicrobial compounds, and exerting health-promoting effects. In this study, we report the probiotic properties and baking characteristics of Lactobacillus plantarum SPC-SNU 72-2 isolated from kimchi. This strain is safe to use in food fermentation as it does not carry genes for biogenic amine production (i.e., hdc, tdc, and ldc) and shows no beta-hemolytic activity against red blood cells. The strain is also stable under simulated human gastrointestinal conditions, showing tolerance to gastric acid and bile salt, and adheres well to colonic epithelial cells. Additionally, this strain prevents pathogen growth and activates mouse peritoneal macrophages by inducing cytokines such as tumor necrosis factor-alpha, interleukin (IL)-6, and IL-12. Furthermore, the strain possesses good baking properties, providing rich aroma during dough fermentation and contributing to the enhancement of bread texture. Taken together, L. plantarum SPC-SNU 72-2 has the properties of a good starter strain based on the observation that it improves bread flavor and texture while also providing probiotic effects comparable with commercial strains" |
Keywords: | Animals Antibiosis Bacterial Adhesion Bile Acids and Salts/metabolism Bread/analysis/*microbiology Caco-2 Cells Fermentation Fermented Foods/*microbiology *Food Microbiology Humans Immunomodulation Lactobacillus plantarum/genetics/*metabolism/physiology M; |
Notes: | "MedlinePark, Da Min Bae, Jae-Han Kim, Min Soo Kim, Hyeontae Kang, Shin Dal Shim, Sangmin Lee, Deukbuhm Seo, Jin-Ho Kang, Hee Han, Nam Soo eng Korea (South) 2019/10/23 J Microbiol Biotechnol. 2019 Nov 28; 29(11):1729-1738. doi: 10.4014/jmb.1907.07039" |