Title: | Simulated herbivory does not constrain phenotypic plasticity to shade through ontogeny in a relict tree |
Author(s): | Pardo A; Garcia FM; Valladares F; Pulido F; |
Address: | "Institute for Dehesa Research (INDEHESA), University of Extremadura, Plasencia, Spain. Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain. Departamento de Ciencias, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain" |
ISSN/ISBN: | 1438-8677 (Electronic) 1435-8603 (Linking) |
Abstract: | "Ecological limits to phenotypic plasticity (PP), induced by simultaneous biotic and abiotic factors, can prevent organisms from exhibiting optimal plasticity, and in turn lead to decreased fitness. Herbivory is an important biotic stressor and may limit plant functional responses to challenging environmental conditions such as shading. In this study we investigated whether plant functional responses and PP to shade are constrained by herbivory, and whether such constraints are due to direct effects based on resource limitation by considering ontogeny. We used as a model system the relict tree Prunus lusitanica and implemented an indoor experiment to quantify the response of saplings of different ages to shade and herbivory. We measured five functional traits and quantitatively calculated PP. Results showed that herbivory did not constrain functional responses or PP to shade except for shoot:root ratio (SR), which, despite showing a high PP in damaged saplings, decreased under shade instead of increasing. Damaged saplings of older age did not exhibit reduced constraints on functional responses to shade and generally presented a lower PP than damaged saplings of younger age. Our findings suggest that herbivory-mediated constraints on plant plasticity to shade may not be as widespread as previously thought. Nonetheless, the negative effect of herbivory on SR plastic expression to shade could be detrimental for plant fitness. Finally, our results suggest a secondary role of direct effects (resource-based) on P. lusitanica plasticity limitation. Further studies should quantify plant resources in order to gain a better understanding of this seldom-explored subject" |
Keywords: | "*Biological Ontologies Ecology *Herbivory Light Models, Biological Phenotype Plant Leaves/physiology/radiation effects Plant Roots/physiology/radiation effects Plant Shoots/physiology/radiation effects Seedlings/physiology/radiation effects Stress, Physio;" |
Notes: | "MedlinePardo, A Garcia, F M Valladares, F Pulido, F eng England 2016/03/19 Plant Biol (Stuttg). 2016 Jul; 18(4):618-26. doi: 10.1111/plb.12447. Epub 2016 Apr 7" |