Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPregnancy and estrogen enhance neural progenitor-cell proliferation in the vomeronasal sensory epithelium    Next AbstractSequential stir bar sorptive extraction for uniform enrichment of trace amounts of organic pollutants in water samples »

J Environ Monit


Title:Stabilities of 58 volatile organic compounds in fused-silica-lined and SUMMA polished canisters under various humidified conditions
Author(s):Ochiai N; Tsuji A; Nakamura N; Daishima S; Cardin DB;
Address:"Yokogawa Analytical Systems Inc., 2-11-13 Nakacho, Musashino-shi, Tokyo 180-0006, Japan"
Journal Title:J Environ Monit
Year:2002
Volume:4
Issue:6
Page Number:879 - 889
DOI: 10.1039/b209210g
ISSN/ISBN:1464-0325 (Print) 1464-0325 (Linking)
Abstract:"Fused-silica-lined (FSL) canisters and SUMMA polished (SUMMA) canisters were compared for the recoveries and the stabilities of 58 volatile organic compounds (VOCs) at low ppbv (volume/volume) levels under various humidified conditions using a three-stage preconcentration method followed by GC-MS analysis. The target VOCs included non-polar VOCs (e.g. halogenated hydrocarbons and aromatic hydrocarbons) and polar VOCs (e.g. alcohols, ketones, esters, ethers, nitriles and thiols). The three-stage preconcentration method was initially optimized for simultaneous analysis of non-polar and polar VOCs because determination of canister stability is dependent on the accuracy of analytical measurements. The method showed good linearity over the concentration range from 1 to 25 ppbv for all target analytes, and the correlation coefficients were higher than 0.9974. The method detection limits ranged from 0.023 to 0.39 ppbv. The test mixtures loaded in both type of canisters (n = 3) had concentrations of 1.7-2.5 ppbv per compound at ambient pressure under various humidified conditions (%RH = 1.6, 8.0, 27, 39, 53 and >99% with excess water present). All canister samples were initially analyzed on day 0 (after 6-12 h). The effect of competitive adsorption of water vapor and polar VOCs on active sites of interior surface was remarkably observed for SUMMA canisters. Polar VOCs had a greater requirement for water vapor to be present. The RH percentages that ensured good recovery on day 0 were RH > 8% for non-polar VOCs and RH > 27% for polar VOCs (except alcohols under the condition of RH > 99%). All thiols were not recovered from SUMMA canisters under all conditions. FSL canisters showed good recoveries of more than 86% for all VOCs under all conditions on day 0 (except alcohols under the condition of RH > 99%). The recoveries of alcohols in both canisters under the condition of RH > 99% displayed relatively low recoveries in the range 25-76% because of the partitioning effect into condensed water. The canister samples under the conditions of RH 8.0, 27, 53 and > 99% were analyzed for the stability test on days 3, 7, 14 and 28 after loading. All non-polar VOCs were reasonably stable in the FSL canisters under all examined conditions over 28 days. However, several polar VOCs that have relatively lower vapor pressure, e.g. MIBK, butyl acetate and alcohols except ethanol, showed unstable characteristics under relatively dry conditions (RH 8 and 27%) during 28 days. RH > 53% was needed to ensure good stabilities of all analytes except thiols with the recoveries of > 80% over 28 days for both canisters. Although the FSL canister showed good recoveries of more than 86% for thiols on day 0, drastic degradations were observed after day 3 and they were not detected after day 14"
Keywords:Air Pollutants/*analysis Environmental Monitoring/*instrumentation Humidity Organic Chemicals/*analysis Reproducibility of Results Sensitivity and Specificity Silicon Dioxide/chemistry Volatilization;
Notes:"MedlineOchiai, Nobuo Tsuji, Akira Nakamura, Naomi Daishima, Shigeki Cardin, Daniel B eng Evaluation Study England 2003/01/02 J Environ Monit. 2002 Dec; 4(6):879-89. doi: 10.1039/b209210g"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 23-09-2024