Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSensitivities of Simulated Source Contributions and Health Impacts of PM(2.5) to Aerosol Models    Next AbstractRapid 'breath-print' of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study »

Sci Total Environ


Title:Source apportionment of anthropogenic and biogenic organic aerosol over the Tokyo metropolitan area from forward and receptor models
Author(s):Morino Y; Iijima A; Chatani S; Sato K; Kumagai K; Ikemori F; Ramasamy S; Fujitani Y; Kimura C; Tanabe K; Sugata S; Takami A; Ohara T; Tago H; Saito Y; Saito S; Hoshi J;
Address:"National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. Electronic address: morino.yu@nies.go.jp. Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan. National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan. Nagoya City Institute for Environmental Sciences, 5-16-8 Toyoda, Minami-ku, Nagoya, Aichi 457-0841, Japan. National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan. Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan"
Journal Title:Sci Total Environ
Year:2023
Volume:20230816
Issue:
Page Number:166034 -
DOI: 10.1016/j.scitotenv.2023.166034
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"Organic aerosol (OA) is a dominant component of PM(2.5), and accurate knowledge of its sources is critical for identification of cost-effective measures to reduce PM(2.5). For accurate source apportionment of OA, we conducted field measurements of organic tracers at three sites (one urban, one suburban, and one forest) in the Tokyo Metropolitan Area and numerical simulations of forward and receptor models. We estimated the source contributions of OA by calculating three receptor models (positive matrix factorization, chemical mass balance, and secondary organic aerosol (SOA)-tracer method) using the ambient concentrations, source profiles, and production yields of OA tracers. Sensitivity simulations of the forward model (chemical transport model) for precursor emissions and SOA formation pathways were conducted. Cross-validation between the receptor and forward models demonstrated that biogenic and anthropogenic SOA were better reproduced by the forward model with updated modules for emissions of biogenic volatile organic compounds (VOC) and for SOA formation from biogenic VOC and intermediate-volatility organic compounds than by the default setup. The source contributions estimated by the forward model generally agreed with those of the receptor models for the major OA sources: mobile sources, biomass combustion, biogenic SOA, and anthropogenic SOA. The contributions of anthropogenic SOA, which are the main focus of this study, were estimated by the forward and receptor models to have been between 9 % and 15 % in summer 2019. The observed percent modern carbon data indicate that the amounts of anthropogenic SOA produced during daytime have substantially declined from 2007 to 2019. This trend is consistent with the decreasing trend of anthropogenic VOC, suggesting that reduction of anthropogenic VOC has been effective in reducing anthropogenic SOA in the atmosphere"
Keywords:Intermediate-volatility organic compounds Organic tracers Percent modern carbon Secondary organic aerosol Source apportionment;
Notes:"PublisherMorino, Yu Iijima, Akihiro Chatani, Satoru Sato, Kei Kumagai, Kimiyo Ikemori, Fumikazu Ramasamy, Sathiyamurthi Fujitani, Yuji Kimura, Chisato Tanabe, Kiyoshi Sugata, Seiji Takami, Akinori Ohara, Toshimasa Tago, Hiroshi Saito, Yoshinori Saito, Shinji Hoshi, Junya eng Netherlands 2023/08/19 Sci Total Environ. 2023 Aug 16; 904:166034. doi: 10.1016/j.scitotenv.2023.166034"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024