Title: | Synergetic effect based gel-emulsions and their utilization for the template preparation of porous polymeric monoliths |
Author(s): | Miao Q; Chen X; Liu L; Peng J; Fang Y; |
Address: | "Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, China" |
ISSN/ISBN: | 1520-5827 (Electronic) 0743-7463 (Linking) |
Abstract: | "A polymerizable cholesteryl derivative (COA) was synthesized and used as a stabilizer for creating gel-emulsions with water in polymerizable monomers, of which they are styrene (ST), tert-butyl methacrylate (t-BMA), ethylene glycol dimethyl acrylate (EGDMA), and methyl methacrylate (MMA), etc. Interestingly, in addition to COA, the presence of a small amount of Span-80 is a necessity for the formation of the monomers containing gel-emulsions. Unlike conventional ones, the volume fraction of the dispersed phase in the gel-emulsions as created could be much lower than 74%, a critical value for routine gel-emulsions. Stabilization of these gel-emulsions as created has been attributed to the synergetic effect between COA, a typical low-molecular-mass gelator (LMMG), and Span-80, a surfactant, of which the former gels the continuous phase and the latter minimizes the interfacial energy of the continuous phase and the dispersed phase. SEM observation confirmed the network structures of COA in the gel-emulsions. Rheological tests demonstrated that the storage modulus, G', and the yield stress of the gel-emulsions decrease along with increasing the volume fraction of the dispersed phase, water, provided it is not greater than 74%-a result inconsistent with the theory explaining formation of routine gel-emulsions and in support of the conclusion that the systems under study follow a different mechanism. Furthermore, unlike LMMG-based stabilizers reported earlier, the gelator, COA, created in the present study has been functioning not only as a stabilizer but also a monomer. To illustrate the conceptual advantages, the gel-emulsions of water in ST/DVB/AIBN were polymerized. As expected, the densities and internal structures of the monoliths as prepared are highly adjustable, functionalization of the materials with cholesterol has been realized, and at the same time the problem of stabilizer leaking has been avoided. A preliminary test for gas adsorption demonstrated that the monoliths as prepared are good adsorbents for some volatile organic compounds (VOCs), in particular benzene, toluene, ethylbenzene, and xylene-the famous and toxic BTEX. It is believed that the findings reported in the present work provide not only a new strategy for creating novel gel-emulsions but also a new route for functionalizing porous polymeric monoliths" |
Notes: | "PubMed-not-MEDLINEMiao, Qing Chen, Xiangli Liu, Lingling Peng, Junxia Fang, Yu eng 2014/10/23 Langmuir. 2014 Nov 18; 30(45):13680-8. doi: 10.1021/la502988x. Epub 2014 Nov 5" |