Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSafety recommendations for moxa use based on the concentration of noxious substances produced during commercial indirect moxibustion    Next AbstractPost-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA »

Planta


Title:Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles
Author(s):Kwon YS; Ryu CM; Lee S; Park HB; Han KS; Lee JH; Lee K; Chung WS; Jeong MJ; Kim HK; Bae DW;
Address:"Department of Applied Biology and Research Institute of Life Science, Gyeongsang National University, Jinju, 660-701, South Korea"
Journal Title:Planta
Year:2010
Volume:20100904
Issue:6
Page Number:1355 - 1370
DOI: 10.1007/s00425-010-1259-x
ISSN/ISBN:1432-2048 (Electronic) 0032-0935 (Linking)
Abstract:"Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species"
Keywords:"Antioxidants/metabolism Arabidopsis/growth & development/*metabolism Arabidopsis Proteins/*metabolism Bacillus subtilis/*metabolism Base Sequence Chlorophyll/metabolism DNA Primers *Proteome Reverse Transcriptase Polymerase Chain Reaction Spectrometry, Ma;"
Notes:"MedlineKwon, Young Sang Ryu, Choong-Min Lee, Soohyun Park, Hyo Bee Han, Ki Soo Lee, Jung Han Lee, Kyunghee Chung, Woo Sik Jeong, Mi-Jeong Kim, Hee Kyu Bae, Dong-Won eng Research Support, Non-U.S. Gov't Germany 2010/09/08 Planta. 2010 Nov; 232(6):1355-70. doi: 10.1007/s00425-010-1259-x. Epub 2010 Sep 4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024