Title: | "A simple method for the accurate determination of the Henry's law constant for highly sorptive, semivolatile organic compounds" |
Address: | "Department of Civil and Environmental Engineering, Hanyang University, Seoul, 133-791, Republic of Korea. Department of Civil and Environmental Engineering, Hanyang University, Seoul, 133-791, Republic of Korea. kkim61@nate.com" |
DOI: | 10.1007/s00216-015-9159-3 |
ISSN/ISBN: | 1618-2650 (Electronic) 1618-2642 (Linking) |
Abstract: | "A novel technique is developed to determine the Henry's law constants (HLCs) of seven volatile fatty acids (VFAs) with significantly high solubility using a combined application of thermal desorber/gas chromatography/mass spectrometry (TD/GC/MS). In light of the strong sorptive properties of these semi-volatile organic compounds (SVOCs), their HLCs were determined by properly evaluating the fraction lost on the surface of the materials used to induce equilibrium (vial, gas-tight syringe, and sorption tube). To this end, a total of nine repeated experiments were conducted in a closed (static) system at three different gas/liquid volume ratios. The best estimates for HLCs (M/atm) were thus 7,200 (propionic acid), 4,700 (i-butyric acid), 4,400 (n-butyric acid), 2,700 (i-valeric acid), 2,400 (n-valeric acid), 1,000 (hexanoic acid), and 1,500 (heptanoic acid). The differences in the HLC values between this study and previous studies, if assessed in terms of the percent difference, ranged from 9.2% (n-valeric acid) to 55.7% (i-valeric acid). We overcame the main cause of errors encountered in previous studies by performing the proper correction of the sorptive losses of the SVOCs that inevitably took place, particularly on the walls of the equilibration systems (mainly the headspace vial and/or the glass tight syringe)" |
Keywords: | "Fatty Acids, Volatile/*chemistry Gas Chromatography-Mass Spectrometry/*methods Kinetics Solubility Aqueous solution analysis Headspace analysis Henry's law constant Volatile fatty acid;" |
Notes: | "MedlineKim, Yong-Hyun Kim, Ki-Hyun eng Evaluation Study Research Support, Non-U.S. Gov't Germany 2015/11/19 Anal Bioanal Chem. 2016 Jan; 408(3):775-84. doi: 10.1007/s00216-015-9159-3. Epub 2015 Nov 17" |