Title: | Regulatory mechanism predates the evolution of self-organizing capacity in simulated ant-like robots |
Author(s): | Fujisawa R; Ichinose G; Dobata S; |
Address: | "1Department of Systems Design and Informatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502 Japan. Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka, 432-8561 Japan. 3Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan" |
DOI: | 10.1038/s42003-018-0276-3 |
ISSN/ISBN: | 2399-3642 (Electronic) 2399-3642 (Linking) |
Abstract: | "The evolution of complexity is one of the prime features of life on Earth. Although well accepted as the product of adaptation, the dynamics underlying the evolutionary build-up of complex adaptive systems remains poorly resolved. Using simulated robot swarms that exhibit ant-like group foraging with trail pheromones, we show that their self-organizing capacity paradoxically involves regulatory behavior that arises in advance. We focus on a traffic rule on their foraging trail as a regulatory trait. We allow the simulated robot swarms to evolve pheromone responsiveness and traffic rules simultaneously. In most cases, the traffic rule, initially arising as selectively neutral component behaviors, assists the group foraging system to bypass a fitness valley caused by overcrowding on the trail. Our study reveals a hitherto underappreciated role of regulatory mechanisms in the origin of complex adaptive systems, as well as highlights the importance of embodiment in the study of their evolution" |
Keywords: | "*Algorithms *Models, Theoretical;" |
Notes: | "MedlineFujisawa, Ryusuke Ichinose, Genki Dobata, Shigeto eng Research Support, Non-U.S. Gov't England 2019/01/25 Commun Biol. 2019 Jan 18; 2:25. doi: 10.1038/s42003-018-0276-3. eCollection 2019" |