Title: | [Photocatalytic degradation of formaldehyde and VOCs in air on the porous nickel mesh coated with nanometer TiO2] |
Author(s): | Ding Z; Feng XG; Chen XD; Fu DG; Yuan CW; |
Address: | "Jiangsu Center for Diseases Prevention and Control, Nanjing 210009, China" |
ISSN/ISBN: | 0250-3301 (Print) 0250-3301 (Linking) |
Abstract: | "Three different metal ions doped TiO2 photocatalysts, which were prepared by the sol-gel method, were immobilized to porous nickel mesh by coating. The photocatalytic degradation activity of the supported photocatalyst on formaldehyde and volatile organic compounds (VOCs) was investigated. The results show that the nanometer TiO2 has an anatase structure. The photocatalytic degradation rate of formaldehyde and VOCs of 1.5% La3+ doped TiO2 coated on porous nickel mesh at 90 min are: 94% and 87%, higher than undoped TiO2: 83% and 72%, Fe3+ doped TiO2: 62% and 62%, Ag+ doped TiO2: 86% [Chinese character: see text] 81%. The orders of photocatalytic degradation rate on formaldehyde and VOCs with different content of La3+ doped TiO2 are as follows: 1.5% > 1% > 2% > undoped, 1.5% is the optimum La3+ doped content. Decreasing circular wind speed and using 254 nm or 365 nm ultraviolet wavelength will not influence the photocatalytic degradation rate of formaldehyde and VOCs" |
Keywords: | Air Pollutants/chemistry Catalysis/radiation effects Formaldehyde/*chemistry Metal Nanoparticles/*chemistry Nickel/*chemistry Organic Chemicals/*chemistry Photochemistry Photolysis/radiation effects Porosity Titanium/*chemistry Volatilization; |
Notes: | "MedlineDing, Zhen Feng, Xiao-gang Chen, Xiao-dong Fu, De-gang Yuan, Chun-wei chi English Abstract Research Support, Non-U.S. Gov't China 2006/11/23 Huan Jing Ke Xue. 2006 Sep; 27(9):1814-9" |