Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFast identification of Bacteria for Quality Control of Drinking Water through A Static Headspace Sampler Coupled to a Sensory Perception System    Next AbstractDiversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation »

Front Microbiol


Title:Methanethiol and Dimethylsulfide Cycling in Stiffkey Saltmarsh
Author(s):Carrion O; Pratscher J; Richa K; Rostant WG; Farhan Ul Haque M; Murrell JC; Todd JD;
Address:"School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom. The Lyell Centre, Heriot-Watt University, Edinburgh, United Kingdom. School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, United States. School of Biological Sciences, University of East Anglia, Norwich, United Kingdom"
Journal Title:Front Microbiol
Year:2019
Volume:20190510
Issue:
Page Number:1040 -
DOI: 10.3389/fmicb.2019.01040
ISSN/ISBN:1664-302X (Print) 1664-302X (Electronic) 1664-302X (Linking)
Abstract:"Methanethiol (MeSH) and dimethylsulfide (DMS) are volatile organic sulfur compounds (VOSCs) with important roles in sulfur cycling, signaling and atmospheric chemistry. DMS can be produced from MeSH through a reaction mediated by the methyltransferase MddA. The mddA gene is present in terrestrial and marine metagenomes, being most abundant in soil environments. The substrate for MddA, MeSH, can also be oxidized by bacteria with the MeSH oxidase (MTO) enzyme, encoded by the mtoX gene, found in marine, freshwater and soil metagenomes. Methanethiol-dependent DMS production (Mdd) pathways have been shown to function in soil and marine sediments, but have not been characterized in detail in the latter environments. In addition, few molecular studies have been conducted on MeSH consumption in the environment. Here, we performed process measurements to confirm that Mdd-dependent and Mdd-independent MeSH consumption pathways are active in tested surface saltmarsh sediment when MeSH is available. We noted that appreciable natural Mdd-independent MeSH and DMS consumption processes masked Mdd activity. 16S rRNA gene amplicon sequencing and metagenomics data showed that Methylophaga, a bacterial genus known to catabolise DMS and MeSH, was enriched by the presence of MeSH. Moreover, some MeSH and/or DMS-degrading bacteria isolated from this marine environment lacked known DMS and/or MeSH cycling genes and can be used as model organisms to potentially identify novel genes in these pathways. Thus, we are likely vastly underestimating the abundance of MeSH and DMS degraders in these marine sediment environments. The future discovery and characterization of novel enzymes involved in MeSH and/or DMS cycling is essential to better assess the role and contribution of microbes to global organosulfur cycling"
Keywords:dimethylsulfide mddA methanethiol mtoX sulfur cycle;
Notes:"PubMed-not-MEDLINECarrion, Ornella Pratscher, Jennifer Richa, Kumari Rostant, Wayne G Farhan Ul Haque, Muhammad Murrell, J Colin Todd, Jonathan D eng Switzerland 2019/05/28 Front Microbiol. 2019 May 10; 10:1040. doi: 10.3389/fmicb.2019.01040. eCollection 2019"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-09-2024