Title: | Sensory input attenuation allows predictive sexual response in yeast |
Author(s): | Banderas A; Koltai M; Anders A; Sourjik V; |
Address: | "Max Planck Institute for Terrestrial Microbiology &LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, D-35037 Marburg, Germany. Zentrum fur Molekulare Biologie der Universitat Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany" |
ISSN/ISBN: | 2041-1723 (Electronic) 2041-1723 (Linking) |
Abstract: | "Animals are known to adjust their sexual behaviour depending on mate competition. Here we report similar regulation for mating behaviour in a sexual unicellular eukaryote, the budding yeast Saccharomyces cerevisiae. We demonstrate that pheromone-based communication between the two mating types, coupled to input attenuation by recipient cells, enables yeast to robustly monitor relative mate abundance (sex ratio) within a mixed population and to adjust their commitment to sexual reproduction in proportion to their estimated chances of successful mating. The mechanism of sex-ratio sensing relies on the diffusible peptidase Bar1, which is known to degrade the pheromone signal produced by mating partners. We further show that such a response to sexual competition within a population can optimize the fitness trade-off between the costs and benefits of mating response induction. Our study thus provides an adaptive explanation for the known molecular mechanism of pheromone degradation in yeast" |
Keywords: | "Models, Biological Pheromones/metabolism Reproduction Saccharomyces cerevisiae/*physiology Saccharomyces cerevisiae Proteins/metabolism;" |
Notes: | "MedlineBanderas, Alvaro Koltai, Mihaly Anders, Alexander Sourjik, Victor eng European Research Council/International Research Support, Non-U.S. Gov't England 2016/08/26 Nat Commun. 2016 Aug 25; 7:12590. doi: 10.1038/ncomms12590" |