Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTop-predator control-induced trophic cascades: an alternative hypothesis to the conclusion of Colman et al    Next Abstract"Showering in Flint, MI: Is there a DBP problem?" »

Microb Ecol


Title:Regulation of Fatty Acid Production and Release in Benthic Algae: Could Parallel Allelopathy Be Explained with Plant Defence Theories?
Author(s):Allen JL; Ten-Hage L; Leflaive J;
Address:"ECOLAB, Universite de Toulouse, CNRS, INPT, UPS, Toulouse, France. ECOLAB, Universite de Toulouse, CNRS, INPT, UPS, Toulouse, France. josephine.leflaive@univ-tlse3.fr. EcoLab (Laboratoire d'Ecologie Fonctionnelle et Environnement), Universite de Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France. josephine.leflaive@univ-tlse3.fr"
Journal Title:Microb Ecol
Year:2018
Volume:20171006
Issue:3
Page Number:609 - 621
DOI: 10.1007/s00248-017-1082-z
ISSN/ISBN:1432-184X (Electronic) 0095-3628 (Linking)
Abstract:"Many organisms produce chemical compounds, generally referred as secondary metabolites, to defend against predators and competitors (allelopathic compounds). Several hypotheses have been proposed to explain the interaction between environmental factors and secondary metabolites production. However, microalgae commonly use simple metabolites having a role in primary metabolism as allelopathic compounds. The aim of this study was to determine whether classical theories of plant chemical defences could be applied to microalgae producing allelochemicals derived from the primary metabolism. Our study was designed to investigate how growth phase, algal population density, nutrient limitation and carbon assimilation affect the production and release of allelopathic free fatty acids (FFAs) among other FFAs. The model species used was Uronema confervicolum, a benthic filamentous green alga that produces two allelopathic FFAs (linoleic and alpha-linolenic acids) inhibiting diatom growth. FFAs have been quantified in algal biomass and in culture medium. Our results were analysed according to two classical plant defence theories: the growth-differentiation balance hypothesis (GDBH) and the optimal defence theory (ODT), based on the metabolic capacities for defence production and on the need for defence, respectively. While a higher production of allelopathic compounds under increased light conditions supports the use of GDBH with this microalga, the observation of a negative feedback mechanism mostly supports ODT. Therefore, both theories were insufficient to explain all the observed effects of environmental factors on the production of these allelochemicals. This highlights the needs of new theories and models to better describe chemical interactions of microalgae"
Keywords:*Allelopathy Biomass Carbon/metabolism Chlorophyta/growth & development/metabolism Culture Media Diatoms/drug effects/growth & development Fatty Acids/*metabolism/*pharmacology Light Linoleic Acid/metabolism/pharmacology Microalgae/growth & development/*m;
Notes:"MedlineAllen, Joey L Ten-Hage, Loic Leflaive, Josephine eng 2017/10/08 Microb Ecol. 2018 Apr; 75(3):609-621. doi: 10.1007/s00248-017-1082-z. Epub 2017 Oct 6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-12-2024